Role of GABAB receptors and p38MAPK/NF-?B pathway in paclitaxel-induced apoptosis of hippocampal neurons.
Ontology highlight
ABSTRACT: The effects of the anticancer drug paclitaxel on learning and memory are rarely studied.This study investigated changes in GABAB receptor expression during paclitaxel-induced apoptosis of hippocampal neurons and the role of the p38MAPK/NF-?B pathway in this process.Hippocampal neurons isolated from neonatal Sprague-Dawley rats were divided into six groups: Control (C), SB (10?µL of 10-µmol/L SB203580), SN (53?µg/mL SN50), N (1?µmol/L paclitaxel), SB?+?N (10?µmol/L SB203580?+?1?µmol/L paclitaxel) and SN?+?N (53?µg/mL SN50?+?1?µmol/L paclitaxel). Cells in different groups were treated with corresponding agents for 24?h at 37?°C. The apoptosis rate and protein levels of GABAB1 receptors and NF-?B p65 were evaluated. Rat models of neuropathic pain was induced by paclitaxel and were divided into four groups such as N, B?+?N, SN?+?N and SN?+?B?+?N groups. Rats in the N group received intrathecal injections of normal saline solution. Rats in the B?+?N group received intrathecal injections of 10??L baclofen (0.05??g/?L). Rats in the SN?+?N and SN?+?B?+?N groups received intrathecal injections of SN50 and SN50 plus baclofen, respectively. Spatial learning and memory were evaluated in rat models based on the escape latency and the number of crossings over the platform and protein levels of GABAB1 receptors, NF-?B, IL-1? and TNF? were measured by immunohistochemistry assay and western blot.The neuronal apoptosis rate was significantly increased in N (49.16?±?3.12)%, SB?+?N (31.18?±?3.02)% and SN?+?N (28.47?±?3.75)% groups, accompanied by increased levels of GABAB1 receptors and NF-?B p65 (p?DISCUSSIONS AND CONCLUSIONSPaclitaxel may reduce cognitive function in rats through the p38MAPK/NF-?B pathway and GABAB1 receptors.
<h4>Context</h4>The effects of the anticancer drug paclitaxel on learning and memory are rarely studied.<h4>Objective</h4>This study investigated changes in GABA<sub>B</sub> receptor expression during paclitaxel-induced apoptosis of hippocampal neurons and the role of the p38MAPK/NF-κB pathway in this process.<h4>Materials and methods</h4>Hippocampal neurons isolated from neonatal Sprague-Dawley rats were divided into six groups: Control (C), SB (10 µL of 10-µmol/L SB203580), SN (53 µg/mL SN50), ...[more]
Project description:Icariin is a main component of the Chinese medicinal plant Epimedium brevicornu Maxim, exhibits potent activity against inflammatory diseases. Our previous data demonstrated the valid bioactivity of icariin on mitigating rodent asthma. Endoplasmic reticulum (ER) stress and nuclear factor-κB (NF-κB) pathway were involved in the pathogenesis of asthma. However, it remains poorly defined that whether icariin could inhibit ER stress and NF-κB mediated apoptosis in asthma and further influence the central neural system. Herein, we investigated the effects of icariin on primary cultured fetal rat hippocampal neurons and OVALPS-OVA induced asthma rat model. Asthma rat models were established by ovalbumin (OVA) and lipopolysaccharide (LPS) intraperitoneal injection and OVA inhalational challenge. Airway resistance was analyzed to evaluate lung function after last challenge and pathological changes were detected on lung tissues. Assessment of inflammatory cells counts in bronchoalveolar lavage fluids (BALF) were performed and ELISA was used to determine levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and interferon-γ in serum. Protein expression of BiP and IRE-1α, XBP-1s and phosphorylation-IκBα (p-IκBα), IκBα, and p65 as well as cytochrome c, caspase-3 (cleaved caspase-3), and caspase-9 (cleaved caspase-9) were tested by Western blot. We found that icariin could remarkably improve pulmonary function and reduce inflammatory cells in the lung, levels of inflammatory cytokines, and ER stress related proteins as well as NF-κB were prominently suppressed by icariin. Our results suggested that icariin had an inhibitory effect on airway inflammation and neuroprotective effect on ER stress and NF-κB mediated apoptosis in asthma rats and cultured fetal rat hippocampal neurons, which may provide new mechanistic insights into the asthma prevention and treatment of icariin.
Project description:Information processing in the brain depends on specialized organization of neurotransmitter receptors and scaffolding proteins within the postsynaptic density. However, how these molecules are organized in situ remains largely unknown. In this study, template-free classification of oversampled sub-tomograms was used to analyze cryo-electron tomograms of hippocampal synapses. We identified type-A GABA receptors (GABAARs) in inhibitory synapses and determined their in situ structure at 19-Å resolution. These receptors are organized hierarchically: from GABAAR super-complexes with a preferred inter-receptor distance of 11 nm but variable relative angles, through semi-ordered, two-dimensional receptor networks with reduced Voronoi entropy, to mesophasic assembly with a sharp phase boundary. These assemblies likely form via interactions among postsynaptic scaffolding proteins and receptors and align with putative presynaptic vesicle release sites. Such mesophasic self-organization might allow synapses to achieve a 'Goldilocks' state, striking a balance between stability and flexibility and enabling plasticity in information processing.
Project description:Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to α4βδ-GABAAR expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. α4βδ-GABAAR levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of α4βδ-GABAARs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate α4βδ-GABAARs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal α4βδ-GABAARs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal α4βδ-GABAARs for females but not for males. This knowledge of sex-related differences in the underlying mechanisms of resilience to ABA indicates that drugs targeting α4βδ-GABAARs may be helpful for treating stress-induced anxiety and anorexia nervosa of females but not males.
Project description:BackgroundAberrant dopamine neuron activity is attributable to hyperactivity in hippocampal subfields driving a pathological increase in dopamine neuron activity, which is positively correlated with psychosis in humans. Evidence indicates that hippocampal hyperactivity is due to loss of intrinsic GABAergic (gamma-aminobutyric acidergic) inhibition. We have previously demonstrated that hippocampal GABAergic neurotransmission can be modulated by targeting α5-GABAA receptors, which are preferentially expressed in hippocampal regions. Positive and negative allosteric modulators of α5-GABAA receptors (α5-PAMs and α5-NAMs) elicit effects on hippocampal-dependent behaviors. We posited that the selective manipulation of hippocampal inhibition, using α5-PAMs or α5-NAMs, would modulate dopamine activity in control rats. Further, α5-PAMs would reverse aberrant dopamine neuron activity in a rodent model with schizophrenia-related pathophysiologies (methylazoxymethanol acetate [MAM] model).MethodsWe performed in vivo extracellular recordings of ventral tegmental area dopamine neurons in anesthetized rats to compare the effects of two novel, selective α5-PAMs (GL-II-73, MP-III-022), a nonselective α-PAM (midazolam), and two selective α5-NAMs (L-655,708, TB 21007) in control and MAM-treated male Sprague Dawley rats (n = 5-9).ResultsSystemic or intracranial administration of selective α5-GABAA receptor modulators regulated dopamine activity. Specifically, both α5-NAMs increased dopamine neuron activity in control rats, whereas GL-II-73, MP-III-022, and L-655,708 attenuated aberrant dopamine neuron activity in MAM-treated rats, an effect mediated by the ventral hippocampus.ConclusionsThis study demonstrated that α5-GABAA receptor modulation can regulate dopamine neuron activity under control or abnormal activity, providing additional evidence that α5-PAMs and α5-NAMs may have therapeutic applications in psychosis and other psychiatric diseases where aberrant hippocampal activity is present.
Project description:The offspring of super-multiparous sows face problems such as decreased growth performance, poor meat quality and even diseases in animal husbandry. Gama-aminobutyric acid (GABA) has long been known to promote growth and suppress inflammation, but little is known about the mechanisms. A total of 72 growing-finishing pigs from the 8th generation were randomly allotted to 2 groups with 6 replicates per treatment to receive a corn-soybean basal diet or the basal diet supplemented 20 mg/kg GABA for 60 d. After the animal-trial period, samples of serum and liver were collected for further analysis. Additionally, a lipopolysaccharide (LPS)-induced inflammatory model using HepG2 cells was established to explore the role of GABA on regulating hepatic inflammation. The results indicated that inflammatory cell infiltration occurs in the liver of progeny of super-multiparous sows, and dietary supplementation with GABA influenced liver morphology, increased activities of antioxidant enzymes and decreased the expression abundance of pro-inflammatory cytokines, including tumor necrosis factor-α (TNFα) and interleukin (IL)-1β, in the liver of growing-finishing pigs (P < 0.05). In addition, GABA supplementation increased mRNA expressions of peroxisome proliferator-activated receptor γ (PPARγ) and GABA receptors (GABARs), and reduced the expression of toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling (P < 0.05). Additionally, an in vitro experiment demonstrated that GABA decreased the expressions of hepatic TLR4/NF-κB signaling via activating GABARs under LPS-stress (P < 0.05). In summary, liver injury may affect the growth performance of growing-finishing pigs by changing hepatic mitochondrial metabolism, the expression of pro-inflammatory cytokines and TLR4/NF-κB pathway and that GABA supplementation has a restorative effect by acting on GABARs.
Project description:Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1β2γ2 GABAA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 μM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.
Project description:Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that regulates immune and cell-survival signaling pathways. NF-κB has been reported to be present in neurons wherein it reportedly responds to immune and toxic stimuli, glutamate, and synaptic activity. However, because the brain contains many cell types, assays specifically measuring neuronal NF-κB activity are difficult to perform and interpret. To address this, we compared NF-κB activity in cultures of primary neocortical neurons, mixed brain cells, and liver cells, employing Western blot of NF-κB subunits, electrophoretic mobility shift assay (EMSA) of nuclear κB DNA binding, reporter assay of κB DNA binding, immunofluorescence of the NF-κB subunit protein p65, quantitative real-time polymerase chain reaction (PCR) of NF-κB-regulated gene expression, and enzyme-linked immunosorbent assay (ELISA) of produced proteins. Assay of p65 showed its constitutive presence in cytoplasm and nucleus of neurons at levels significantly lower than in mixed brain or liver cells. EMSA and reporter assays showed that constitutive NF-κB activity was nearly absent in neurons. Induced activity was minimal--many fold lower than in other cell types, as measured by phosphorylation and degradation of the inhibitor IκBα, nuclear accumulation of p65, binding to κB DNA consensus sites, NF-κB reporting, or induction of NF-κB-responsive genes. The most efficacious activating stimuli for neurons were the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-beta (IL-β). Neuronal NF-κB was not responsive to glutamate in most assays, and it was also unresponsive to hydrogen peroxide, lipopolysaccharide, norepinephrine, ATP, phorbol ester, and nerve growth factor. The chemokine gene transcripts CCL2, CXCL1, and CXCL10 were strongly induced via NF-κB activation by TNFα in neurons, but many candidate responsive genes were not, including the neuroprotective genes SOD2 and Bcl-xL. Importantly, the level of induced neuronal NF-κB activity in response to TNFα or any other stimulus was lower than the level of constitutive activity in non-neuronal cells, calling into question the functional significance of neuronal NF-κB activity.
Project description:Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.
Project description:Background and purposeThe δ-subunit-containing GABAA receptors, α4 β1 δ and α4 β3 δ, in dentate gyrus granule cells (DGGCs) are known to exhibit both spontaneous channel openings (i.e. constitutive activity) and agonist-induced current. The functional implications of spontaneous gating are unclear. In this study, we tested the hypothesis that constitutively active α4 β1/3 δ receptors limit agonist efficacy.Experimental approachWhole-cell electrophysiological recordings of adult male rat and mouse hippocampal DGGCs were used to characterize known agonists and antagonists at δ-subunit-containing GABAA receptors. To separate constitutive and agonist-induced currents, different recording conditions were employed.Key resultsRecordings at either 24°C or 34°C, including the PKC autoinhibitory peptide (19-36) intracellularly, removed spontaneous gating by GABAA receptors. In the absence of spontaneous gating, DGGCs responded to the α4 β1/3 δ orthosteric agonist Thio-THIP with a four-fold increased efficacy relative to recording conditions favouring constitutive activity. Surprisingly, the neutral antagonist gabazine was unable to antagonize the current by Thio-THIP. Furthermore, a current was elicited by gabazine alone only when the constitutive current was silenced (EC50 2.1 μM). The gabazine-induced current was inhibited by picrotoxin, potentiated by DS2, completely absent in δ-/- mice and reduced in β1 -/- mice, but could not be replicated in human α4 β1/3 δ receptors expressed heterologously in HEK cells.Conclusion and implicationsKinase activity infers spontaneous gating in α4 β1/3 δ receptors in DGGCs. This significantly limits the efficacy of GABAA agonists and has implications in pathologies involving aberrant excitability caused by phosphorylation (e.g. addiction and epilepsy). In such cases, the efficacy of δ-preferring GABAA ligands may be reduced.
Project description:The perisomatic domain of cortical neurons is under the control of two major GABAergic inhibitory interneuron types: regular-spiking cholecystokinin (CCK) basket cells (BCs) and fast-spiking parvalbumin (PV) BCs. CCK and PV BCs are different not only in their intrinsic physiological, anatomical and molecular characteristics, but also in their presynaptic modulation of their synaptic output. Most GABAergic terminals are known to contain GABAB receptors (GABABR), but their role in presynaptic inhibition and surface expression have not been comparatively characterized in the two BC types. To address this, we performed whole-cell recordings from CCK and PV BCs and postsynaptic pyramidal cells (PCs), as well as freeze-fracture replica-based quantitative immunogold electron microscopy of their synapses in the rat hippocampal CA1 area. Our results demonstrate that while both CCK and PV BCs contain functional presynaptic GABABRs, their modulatory effects and relative abundance are markedly different at these two synapses: GABA release is dramatically inhibited by the agonist baclofen at CCK BC synapses, whereas a moderate reduction in inhibitory transmission is observed at PV BC synapses. Furthermore, GABABR activation has divergent effects on synaptic dynamics: paired-pulse depression (PPD) is enhanced at CCK BC synapses, but abolished at PV BC synapses. Consistent with the quantitative differences in presynaptic inhibition, virtually all CCK BC terminals were found to contain GABABRs at high densities, but only 40% of PV BC axon terminals contain GABABRs at detectable levels. These findings add to an increasing list of differences between these two interneuron types, with implications for their network functions.