Commentary: Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera.
Commentary: Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus <i>Mycobacterium</i> into an Emended Genus <i>Mycobacterium</i> and Four Novel Genera.
Project description:The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the "Tuberculosis-Simiae," "Terrae," "Triviale," "Fortuitum-Vaccae," and "Abscessus-Chelonae" clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the "Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the "Fortuitum-Vaccae" clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the "Tuberculosis-Simiae" clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the "Fortuitum-Vaccae," "Terrae," "Triviale," and "Abscessus-Chelonae" clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.
Project description:Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the "Aeruginosa clade" containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae genomes have identified 98 novel conserved signature indels (CSIs), which are uniquely shared by the species from different observed clades/groups. Six CSIs, which are exclusively shared by species from the "Aeruginosa clade," provide reliable demarcation of this clade corresponding to the genus Pseudomonas sensu stricto in molecular terms. The remaining 92 identified CSIs are specific for nine other Pseudomonas species clades and the genera Azomonas and Azotobacter which branch in between them. The identified CSIs provide strong independent evidence of the genetic cohesiveness of these species clades and offer reliable means for their demarcation/circumscription. Based on the robust phylogenetic and molecular evidence presented here supporting the distinctness of the observed Pseudomonas species clades, we are proposing the transfer of species from the following clades into the indicated novel genera: Alcaligenes clade - Aquipseudomonas gen. nov.; Fluvialis clade - Caenipseudomonas gen. nov.; Linyingensis clade - Geopseudomonas gen. nov.; Oleovorans clade - Ectopseudomonas gen. nov.; Resinovorans clade - Metapseudomonas gen. nov.; Straminea clade - Phytopseudomonas gen. nov.; and Thermotolerans clade - Zestomonas gen. nov. In addition, descriptions of the genera Azomonas, Azotobacter, Chryseomonas, Serpens, and Stutzerimonas are emended to include information for the CSIs specific for them. The results presented here should aid in the development of a more reliable classification scheme for Pseudomonas species.
Project description:Previous phylogenies showed conflicting relationships among the subfamilies and genera within the fern family Ophioglossaceae. However, their classification remains unsettled where contrasting classifications recognize four to 15 genera. Since these treatments are mostly based on phylogenetic evidence using limited, plastid-only loci, a phylogenomic understanding is actually necessary to provide conclusive insight into the systematics of the genera. In this study, we have therefore compiled datasets with the broadest sampling of Ophioglossaceae genera to date, including all fifteen currently recognized genera, especially for the first time the South African endemic genus Rhizoglossum. Notably, our comprehensive phylogenomic matrix is based on both plastome and mitogenome genes. Inferred from the coding sequences of 83 plastid and 37 mitochondrial genes, a strongly supported topology for these subfamilies is presented, and is established by analyses using different partitioning approaches and substitution models. At the generic level, most relationships are well resolved except for few within the subfamily Ophioglossoideae. With this new phylogenomic scheme, key morphological and genomic changes were further identified along this backbone. In addition, we confirmed numerous horizontally transferred (HGT) genes in the genera Botrypus, Helminthostachys, Mankyua, Sahashia, and Sceptridium. These HGT genes are most likely located in mitogenomes and are predominately donated from angiosperm Santalales or non-Ophioglossaceae ferns. By our in-depth searches of the organellar genomes, we also provided phylogenetic overviews for the plastid and mitochondrial MORFFO genes found in these Ophioglossaceae ferns.
Project description:The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov.
Project description:Background and aimsCephalotaxus is a paleo-endemic genus in East Asia that consists of about 7-9 conifer species. Despite its great economic and ecological importance, the relationships between Cephalotaxus and related genera, as well as the interspecific relationships within Cephalotaxus, have long been controversial, resulting in contrasting taxonomic proposals in delimitation of Cephalotaxaceae and Taxaceae. Based on plastome data, this study aims to reconstruct a robust phylogeny to infer the systematic placement and the evolutionary history of Cephalotaxus.MethodsA total of 11 plastomes, representing all species currently recognized in Cephalotaxus and two Torreya species, were sequenced and assembled. Combining these with previously published plastomes, we reconstructed a phylogeny of Cephalotaxaceae and Taxaceae with nearly full taxonomic sampling. Under a phylogenetic framework and molecular dating, the diversification history of Cephalotaxus and allied genera was explored.Key resultsPhylogenetic analyses of 81 plastid protein-coding genes recovered robust relationships between Cephalotaxus and related genera, as well as providing a well-supported resolution of interspecific relationships within Cephalotaxus, Taxus, Torreya and Amentotaxus. Divergence time estimation indicated that most extant species of these genera are relatively young, although fossil and other molecular evidence consistently show that these genera are ancient plant lineages.ConclusionsOur results justify the taxonomic proposal that recognizes Cephalotaxaceae as a monotypic family, and contribute to a clear-cut delineation between Cephalotaxaceae and Taxaceae. Given that extant species of Cephalotaxus are derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and Pleistocene climatic fluctuations, they are not evolutionary relics.
Project description:A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.
Project description:The genus Conidiobolus is an important group in entomophthoroid fungi and is considered to be polyphyletic in recent molecular phylogenies. To re-evaluate and delimit this genus, multi-locus phylogenetic analyses were performed using the large and small subunits of nuclear ribosomal DNA (nucLSU and nucSSU), the small subunit of the mitochondrial ribosomal DNA (mtSSU) and the translation elongation factor 1-alpha (EF-1α). The results indicated that the Conidiobolus is not monophyletic, being grouped into a paraphyletic grade with four clades. Consequently, the well-known Conidiobolus is revised and three new genera Capillidium, Microconidiobolus and Neoconidiobolus are proposed along with one new record and 22 new combinations. In addition, the genus Basidiobolus is found to be basal to the other entomophthoroid taxa and the genus Batkoa locates in the Entomophthoraceae clade.
Project description:The haloarchaeal genera Natrinema and Haloterrigena were described almost simultaneously by two different research groups and some strains studied separately were described as different species of these genera. Furthermore, the description of additional species were assigned to either Natrinema or Haloterrigena, mainly on the basis of the phylogenetic comparative analysis of single genes (16S rRNA gene and more recently rpoB' gene), but these species were not adequately separated or assigned to the corresponding genus. Some studies suggested that the species of these two genera should be unified into a single genus, while other studies indicated that the genera should remain but some of the species should be reassigned. In this study, we have sequenced or collected the genomes of the type strains of species of Natrinema and Haloterrigena and we have carried out a comparative genomic analysis in order to clarify the controversy related to these two genera. The phylogenomic analysis based on the comparison of 525 translated single-copy orthologous genes and the Overall Genome Relatedness Indexes (i.e., AAI, POCP, ANI, and dDDH) clearly indicate that the species Haloterrigena hispanica, Haloterrigena limicola, Haloterrigena longa, Haloterrigena mahii, Haloterrigena saccharevitans, Haloterrigena thermotolerans, and Halopiger salifodinae should be transferred to the genus Natrinema, as Natrinema hispanicum, Natrinema limicola, Natrinema longum, Natrinema mahii, Natrinema saccharevitans, Natrinema thermotolerans, and Natrinema salifodinae, respectively. On the contrary, the species Haloterrigena turkmenica, Haloterrigena salifodinae, and Haloterrigena salina will remain as the only representative species of the genus Haloterrigena. Besides, the species Haloterrigena daqingensis should be reclassified as a member of the genus Natronorubrum, as Natronorubrum daqingense. At the species level, Haloterrigena jeotgali and Natrinema ejinorense should be considered as a later heterotypic synonyms of the species Haloterrigena (Natrinema) thermotolerans and Haloterrigena (Natrinema) longa, respectively. Synteny analysis and phenotypic features also supported those proposals.
Project description:Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum. Numerous recent studies have independently questioned Methylorubrum as a valid genus, but the prior revision has left discrepancies among taxonomic databases. Here, we review phylogenomic and phenotypic evidence against Methylorubrum as a genus and call for its abandonment. Because Methylobacterium sensu lato forms a consistent and monophyletic genus, we argue for the restoration of the former and consensual Methylobacterium taxonomy. The large genomic, phenotypic, and ecological diversity within Methylobacterium however suggests complex evolutionary and adaptive processes and support the description of the most basal clade of Methylobacterium (group C) as a distinct genus in future work. Overall, this perspective demonstrates the danger of solely relying upon the 16S rRNA gene as a delimiter of genus level taxonomy and that further attempts must include more robust phenotypic and phylogenomic criteria.