Project description:There is an ever-increasing demand for small-size, low-cost, and high-precision positioning systems. Therefore, investigation in this field is performed to search for various solutions that can meet technical requirements of precise multi-degree-of-freedom (DOF) positioning systems. This paper presents a new design of a piezoelectric cylindrical actuator with two active kinematic pairs. This means that a single actuator is used to create vibrations that are transformed into the rotation of the sphere located on the top of the cylinder and at the same time ensure movement of the piezoelectric cylinder on the plane. Numerical and experimental investigations of the piezoelectric cylinder have been performed. A mathematical model of contacting force control was developed to solve the problem of positioning of the rotor when it needs to be rotated or moved according to a specific motion trajectory. The numerical simulation included harmonic response analysis of the actuator to analyze the trajectories of the contact points motion. A prototype actuator has been manufactured and tested. Obtained results confirmed that such a device is suitable for both positioning and movement of the actuator in the plane.
Project description:In deep underground engineering, in a large spatial, high-stress environment, rapid excavation is likely to affect the loading rate of the fault structure and to cause stick-slip. In this study, an experiment was conducted to explore the stick-slip characteristics at different loading rates. A double-sided shear experiment and the digital speckle correlation method were used to analyze the evolution of the displacement field, the slip displacement, and the slip rate of the fault's stick-slip activity at different loading rates as well as their correlation with the loading rate. The loading rate, moment magnitude, and stress drop of the fault's stick-slip and their corresponding relationships were studied. The results show that the occurrence of stick-slip is inversely proportional to the loading rate. The evolution of the fault-slip displacement field at different loading rates is similar. At a given loading rate, the magnitude is positively correlated with the stress drop. The magnitude and stress drop are inversely related to the loading rate.
Project description:Solid matter that can rapidly and reversibly switch between adhesive and non-adhesive states is desired in many technological domains including climbing robotics, actuators, wound dressings, and bioelectronics due to the ability for on-demand attachment and detachment. For most types of smart adhesive materials, however, reversible switching occurs only at narrow scales (nanoscale or microscale), which limits the realization of interchangeable surfaces with distinct adhesive states. Here, we report the design of a switchable adhesive hydrogel via dynamic multiscale contact synergy, termed as DMCS-hydrogel. The hydrogel rapidly switches between slippery (friction ~0.04 N/cm2) and sticky (adhesion ~3 N/cm2) states in the solid-solid contact process, exhibits large span, is switchable and dynamic, and features rapid adhesive switching. The design strategy of this material has wide applications ranging from programmable adhesive materials to intelligent devices.
Project description:Friction between two rough solid surfaces often involves local stick-slip events occurring at different locations of the contact interface. If the apparent contact area is large, multiple local slips may take place simultaneously and the total frictional force is a sum of the pinning forces imposed by many asperities on the interface. Here, we report a systematic study of stick-slip friction over a mesoscale contact area using a hanging-beam lateral atomic-force-microscope, which is capable of resolving frictional force fluctuations generated by individual slip events and measuring their statistical properties at the single-slip resolution. The measured probability density functions (PDFs) of the slip length δxs, the maximal force Fc needed to trigger the local slips, and the local force gradient [Formula: see text] of the asperity-induced pinning force field provide a comprehensive statistical description of stick-slip friction that is often associated with the avalanche dynamics at a critical state. In particular, the measured PDF of δxs obeys a power law distribution and the power-law exponent is explained by a new theoretical model for the under-damped spring-block motion under a Brownian-correlated pinning force field. This model provides a long-sought physical mechanism for the avalanche dynamics in stick-slip friction at mesoscale.
Project description:Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps--separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints.
Project description:We report high-temporal-resolution observations of the spontaneous instability of model granular materials under isotropic and triaxial compression in fully drained conditions during laboratory tests representative of earthquakes. Unlike in natural granular materials, in the model granular materials, during the first stage of the tests, i.e., isotropic compression, a series of local collapses of various amplitudes occurs under random triggering cell pressures. During the second stage, i.e., shearing under triaxial compression, the model granular samples exhibit very large quasiperiodic stick-slip motions at random deviatoric triggering stresses. These motions are responsible for very large stress drops that are described by power laws and are accurate over more than 3 decades in logarithmic space. Then, we identify the quasideterministic nature of these stick-slip events, assuming that they are fully controlled by the cell pressure and solid fraction. Finally, we discuss the potential mechanisms that could explain these intriguing behaviors and the possible links with natural earthquakes.
Project description:We demonstrate a low-power (<0.1 mW), low-voltage (<10 V(p-p)) on-chip piezoelectrically actuated micro-sorter that can deflect single particles and cells at high-speed. With rhodamine in the stream, switching of flow between channels can be visualized at high actuation frequency (micro1.7 kHz). The magnitude of the cell deflection can be precisely controlled by the magnitude and waveform of input voltage. Both simulation and experimental results indicate that the drag force imposed on the suspended particle/cell by the instantaneous fluid displacement can alter the trajectory of the particle/cell of any size, shape, and density of interest in a controlled manner. The open-loop E. Coli cell deflection experiment demonstrates that the sorting mechanism can produce a throughput of at least 330 cells/s, with a promise of a significantly higher throughput for an optimized design. To achieve close-loop sorting operation, fluorescence detection, real-time signal processing, and field-programmable-gate-array (FPGA) implementation of the control algorithms were developed to perform automated sorting of fluorescent beads. The preliminary results show error-free sorting at a sorting efficiency of micro 70%. Since the piezoelectric actuator has an intrinsic response time of 0.1-1 ms and the sorting can be performed under high flowrate (particle speed of micro 1-10 cm/s), the system can achieve a throughput of >1,000 particles/s with high purity.
Project description:The piezoelectrically-actuated stick-slip nanopositioning stage (PASSNS) has been applied extensively, and many designs of PASSNSs have been developed. The friction force between the stick-slip surfaces plays a critical role in successful movement of the stage, which influences the load capacity, dynamic performance, and positioning accuracy of the PASSNS. Toward solving the influence problems of friction force, this paper presents a novel stick-slip nanopositioning stage where the flexure hinge-based friction force adjusting unit was employed. Numerical analysis was conducted to estimate the static performance of the stage, a dynamic model was established, and simulation analysis was performed to study the dynamic performance of the stage. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the maximum forward and backward movement speeds of the stage are 1 and 0.7 mm/s, respectively, and the minimum forward and backward step displacements are approximately 11 and 12 nm, respectively. Compared to the step displacement under no working load, the forward and backward step displacements only increase by 6% and 8% with a working load of 20 g, respectively. And the load capacity of the PASSNS in the vertical direction is about 72 g. The experimental results confirm the feasibility of the proposed stage, and high accuracy, high speed, and good robustness to varying loads were achieved. These results demonstrate the great potential of the developed stage in many nanopositioning applications.
Project description:The tail rotor of a helicopter, a crucial component, traditionally relies on a complex drive mode involving reducers and transmission gears. This conventional setup, with its lengthy transmission chain and numerous components, hinders miniaturization efforts. In response to this challenge, our paper presents a novel piezoelectric drive approach. Our objective was to suggest an innovative design capable of minimizing the components involved in the tail rotor drive. This design can be adjusted in size according to specific requirements and is effective up to a specified speed. Moreover, it facilitates the process of miniaturization and integration. The piezoelectric actuator's stator comprises an ultrasonic amplitude transformer, a ring, and three drive teeth. Utilizing the rod-like structure of the tail brace, the actuator is simplified by adhering ceramic sheets to it. The rotary piezoelectric actuator combines the first longitudinal mode of a rod with torus bending modes. The drive teeth then amplify the ring's displacement, facilitating rotor rotation. The resonant frequency and modal shape of the actuator were determined using the finite element method. Furthermore, an investigation was conducted to analyze the influence of the drive teeth positioning on the motion trajectory at the contact point. Theoretically, we infer that the declination angle of the drive tooth is a crucial parameter for achieving high speeds. To test our idea, we built three prototype stators with different drive tooth declination angles. Our actuator stands out for its cost-effectiveness, structural simplicity, compatibility with harmonic signals, and ease of miniaturization. It can be considered for the drive of the tail rotor of a microhelicopter.
Project description:Intermittent sliding (stick-slip motion) between solids is commonplace (e.g., squeaking hinges), even in the presence of lubricants, and is believed to occur by shear-induced fluidization of the lubricant film (slip), followed by its resolidification (stick). Using a surface force balance, we measure how the thickness of molecularly thin, model lubricant films (octamethylcyclotetrasiloxane) varies in stick-slip sliding between atomically smooth surfaces during the fleeting (ca. 20 ms) individual slip events. Shear fluidization of a film of five to six molecular layers during an individual slip event should result in film dilation of 0.4-0.5 nm, but our results show that, within our resolution of ca. 0.1 nm, slip of the surfaces is not correlated with any dilation of the intersurface gap. This reveals that, unlike what is commonly supposed, slip does not occur by such shear melting, and indicates that other mechanisms, such as intralayer slip within the lubricant film, or at its interface with the confining surfaces, may be the dominant dissipation modes.