Project description:A multicomponent nanocatalyst system was fabricated for the transfer hydrogenation of nitrile compounds. This catalyst system contains palladium, copper, and iron, which are supported on the magnetite nanospheres, and the loading of palladium could be at the parts per million level. Palladium and copper contribute to the transformation of nitrile, and the product distribution highly depends on the alloying of Fe to Cu. The nitriles could be converted to primary amine by the Pd-Cu catalyst in the absence of Fe, whereas in the presence of Fe the products are secondary amines with high selectivity. This could be attributed to the electronic modulation of iron to copper. A variety of nitriles have been transformed to the corresponding primary or secondary amines with high selectivity, and the TOF reaches 2,929 hr-1 for Pd. Furthermore, the catalyst could be recycled by an external magnetic field and reused five times without severe activity loss.
Project description:Hydrogenation of nitriles to primary amines with heterogeneous catalysts under liquid-phase continuous-flow conditions is described. Newly developed polysilane/SiO2-supported Pd was found to be an effective catalyst and various nitriles were converted into primary amine salts in almost quantitative yields under mild reaction conditions. Interestingly, a complex mixture was obtained under batch conditions. Lifetime experiments showed that this catalyst remained active for more than 300 h (TON≥10 000) without loss of selectivity and no metal leaching from the catalyst occurred. By using this continuous-flow hydrogenation, synthesis of venlafaxine, an antidepressant drug, has been accomplished.
Project description:Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenation of all kinds of nitriles to primary amines under mild conditions. By calcination of a template material generated from Ni(ii)nitrate and colloidal silica under air and subsequent reduction in the presence of molecular hydrogen the optimal catalyst is prepared. The prepared supported nanoparticles are stable, can be conveniently used and easily recycled. The applicability of the optimal catalyst material is shown by hydrogenation of >110 diverse aliphatic and aromatic nitriles including functionalized and industrially relevant substrates. Challenging heterocyclic nitriles, specifically cyanopyridines, provided the corresponding primary amines in good to excellent yields. The resulting amines serve as important precursors and intermediates for the preparation of numerous life science products and polymers.
Project description:The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.
Project description:A broad range of secondary and tertiary amides has been hydrogenated to the corresponding amines under mild conditions using an in situ catalyst generated by combining [Ru(acac)3], 1,1,1-tris(diphenylphosphinomethyl)ethane (Triphos) and Yb(OTf)3. The presence of the metal triflate allows to mitigate reaction conditions compared to previous reports thus improving yields and selectivities in the desired amines. The excellent isolated yields of two scale-up experiments corroborate the feasibility of the reaction protocol. Control experiments indicate that, after the initial reduction of the amide carbonyl group, the reaction proceeds through the reductive amination of the alcohol with the amine arising from collapse of the intermediate hemiaminal.
Project description:Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors on milligram and gram scale in excellent isolated yields.
Project description:An efficient synthesis of optically active 4-substituted 2-oxazolidinones by the ruthenium(ii)-NHC-catalysed asymmetric hydrogenation of 2-oxazolones was developed. Excellent enantioselectivities (up to 96% ee) and yields (up to 99%) were obtained for a variety of substrates, bearing a range of functional groups and useful motifs. The hydrogenation reaction was successfully scaled up to gram scale using low catalyst loading. Moreover, the utility of this methodology was demonstrated by the transformation of the enantioenriched product into the corresponding chiral ?-amino alcohol, a bisoxazoline ligand, and the formal synthesis of (-)-aurantioclavine.
Project description:The metal-free reduction of nitro compounds to amines mediated by trichlorosilane was successfully performed for the first time under continuous-flow conditions. Aromatic as well as aliphatic nitro derivatives were converted to the corresponding primary amines in high yields and very short reaction times with no need for purification. The methodology was also extended to the synthesis of two synthetically relevant intermediates (precursors of baclofen and boscalid).
Project description:Hydrogenation of nitriles represents as an atom-economic route to synthesize amines, crucial building blocks in fine chemicals. However, high redox potentials of nitriles render this approach to produce a mixture of amines, imines and low-value hydrogenolysis byproducts in general. Here we show that quasi atomic-dispersion of Pd within the outermost layer of Ni nanoparticles to form a Pd1Ni single-atom surface alloy structure maximizes the Pd utilization and breaks the strong metal-selectivity relations in benzonitrile hydrogenation, by prompting the yield of dibenzylamine drastically from ∼5 to 97% under mild conditions (80 °C; 0.6 MPa), and boosting an activity to about eight and four times higher than Pd and Pt standard catalysts, respectively. More importantly, the undesired carcinogenic toluene by-product is completely prohibited, rendering its practical applications, especially in pharmaceutical industry. Such strategy can be extended to a broad scope of nitriles with high yields of secondary amines under mild conditions.
Project description:Transfer hydrogenative coupling of styrene with primary alcohols using the precatalyst HClRu(CO)(PCy3 )2 modified by AgOTf or HBF4 delivers branched or linear adducts from benzylic or aliphatic alcohols, respectively. Related 2-propanol mediated reductive couplings also are described.