Unknown

Dataset Information

0

Daxx Functions Are p53-Independent In Vivo.


ABSTRACT: Mutations in the death domain-associated protein (DAXX) have been recently identified in a substantial proportion of human pancreatic neuroendocrine tumors (PanNETs). Remarkably, however, little is known about the physiologic role(s) of DAXX despite in vitro studies suggesting potential functions. Most prominently, and supported by tumor sequencing data, DAXX functions in concert with alpha thalassemia/mental retardation X-linked (ATRX) as a histone chaperone complex for the H3.3 variant. Studies have also identified potential roles in apoptosis, transcription, and negative regulation of the p53 tumor suppressor pathway. Herein, a mouse modeling approach was used to specifically address the latter and no significant genetic interaction between Daxx and the p53 pathway was determined. The embryonic lethal phenotype of Daxx loss is not p53-dependent. In addition, Daxx heterozygosity does not sensitize mice to a sublethal dose of ionizing radiation or alter the survival or tumor phenotype of Mdm2 transgenic mice. However, the data support a tumor suppressor role for DAXX as low-dose ionizing radiation produced a higher proportion of carcinomas in Daxx heterozygous mice than wild-type controls.Implications: While DAXX has important in vivo functions, they are independent of an inhibitory role on the p53 tumor suppressor pathway. Mol Cancer Res; 16(10); 1523-9. ©2018 AACR.

SUBMITTER: Wasylishen AR 

PROVIDER: S-EPMC6233723 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Daxx Functions Are p53-Independent <i>In Vivo</i>.

Wasylishen Amanda R AR   Estrella Jeannelyn S JS   Pant Vinod V   Chau Gilda P GP   Lozano Guillermina G  

Molecular cancer research : MCR 20180614 10


Mutations in the death domain-associated protein (DAXX) have been recently identified in a substantial proportion of human pancreatic neuroendocrine tumors (PanNETs). Remarkably, however, little is known about the physiologic role(s) of DAXX despite <i>in vitro</i> studies suggesting potential functions. Most prominently, and supported by tumor sequencing data, DAXX functions in concert with alpha thalassemia/mental retardation X-linked (ATRX) as a histone chaperone complex for the H3.3 variant.  ...[more]

Similar Datasets

| S-EPMC6411979 | biostudies-literature
| S-EPMC2670122 | biostudies-literature
| S-EPMC4558498 | biostudies-literature
| S-EPMC2742829 | biostudies-literature
| S-EPMC1904138 | biostudies-literature
| S-EPMC3528318 | biostudies-literature
| S-EPMC5100575 | biostudies-literature
| S-EPMC3131886 | biostudies-other