Project description:BackgroundLurbinectedin recently received FDA accelerated approval as a second line treatment option for metastatic small cell lung cancer (SCLC). However, there are currently no established biomarkers to predict SCLC sensitivity or resistance to lurbinectedin or preclinical studies to guide rational combinations.MethodsDrug sensitivity was assayed in proliferation assays and xenograft models. Baseline proteomic profiling was performed by reverse-phase protein array. Lurbinectedin-induced changes in intracellular signaling pathways were assayed by Western blot.ResultsAmong 21 human SCLC cell lines, cytotoxicity was observed following lurbinectedin treatment at a low dose (median IC50 0.46 nM, range, 0.06-1.83 nM). Notably, cell lines with high expression of Schlafen-11 (SLFN11) protein, a promising biomarker of response to other DNA damaging agents (e.g., chemotherapy, PARP inhibitors), were more sensitive to single-agent lurbinectedin (FC =3.2, P=0.005). SLFN11 was validated as a biomarker of sensitivity to lurbinectedin using siRNA knockdown and in xenografts representing SLFN11 high and low SCLC. Replication stress and DNA damage markers (e.g., γH2AX, phosphorylated CHK1, phosphorylated RPA32) increased in SCLC cell lines following treatment with lurbinectedin. Lurbinectedin also induced PD-L1 expression via cGAS-STING pathway activation. Finally, the combination of lurbinectedin with the ataxia telangiectasia and Rad3-related protein (ATR) inhibitors ceralasertib and berzosertib showed a greater than additive effect in SLFN11-low models.ConclusionsTogether our data confirm the activity of lurbinectedin across a large cohort of SCLC models and identify SLFN11 as a top candidate biomarker for lurbinectedin sensitivity. In SLFN11-low SCLC cell lines which are relatively resistance to lurbinectedin, the addition of an ATR inhibitor to lurbinectedin re-sensitized otherwise resistant cells, confirming previous observations that SLFN11 is a master regulator of DNA damage response independent of ATR, and the absence of SLFN11 leads to synthetic lethality with ATR inhibition. This study provides a rationale for lurbinectedin in combination with ATR inhibitors to overcome resistance in SCLC with low SLFN11 expression.
Project description:Small-cell lung cancer (SCLC) is an aggressive malignancy in which inhibitors of PARP have modest single-agent activity. We performed a phase I/II trial of combination olaparib tablets and temozolomide (OT) in patients with previously treated SCLC. We established a recommended phase II dose of olaparib 200 mg orally twice daily with temozolomide 75 mg/m2 daily, both on days 1 to 7 of a 21-day cycle, and expanded to a total of 50 patients. The confirmed overall response rate was 41.7% (20/48 evaluable); median progression-free survival was 4.2 months [95% confidence interval (CI), 2.8-5.7]; and median overall survival was 8.5 months (95% CI, 5.1-11.3). Patient-derived xenografts (PDX) from trial patients recapitulated clinical OT responses, enabling a 32-PDX coclinical trial. This revealed a correlation between low basal expression of inflammatory-response genes and cross-resistance to both OT and standard first-line chemotherapy (etoposide/platinum). These results demonstrate a promising new therapeutic strategy in SCLC and uncover a molecular signature of those tumors most likely to respond. SIGNIFICANCE: We demonstrate substantial clinical activity of combination olaparib/temozolomide in relapsed SCLC, revealing a promising new therapeutic strategy for this highly recalcitrant malignancy. Through an integrated coclinical trial in PDXs, we then identify a molecular signature predictive of response to OT, and describe the common molecular features of cross-resistant SCLC.See related commentary by Pacheco and Byers, p. 1340.This article is highlighted in the In This Issue feature, p. 1325.
Project description:Purpose Both temozolomide (TMZ) and poly (ADP-ribose) polymerase (PARP) inhibitors are active in small-cell lung cancer (SCLC). This phase II, randomized, double-blind study evaluated whether addition of the PARP inhibitor veliparib to TMZ improves 4-month progression-free survival (PFS). Patients and Methods A total of 104 patients with recurrent SCLC were randomly assigned 1:1 to oral veliparib or placebo 40 mg twice daily, days 1 to 7, and oral TMZ 150 to 200 mg/m2/day, days 1 to 5, of a 28-day cycle until disease progression, unacceptable toxicity, or withdrawal of consent. Response was determined by imaging at weeks 4 and 8, and every 8 weeks thereafter. Improvement in PFS at 4 months was the primary end point. Secondary objectives included overall response rate (ORR), overall survival (OS), and safety and tolerability of veliparib with TMZ. Exploratory objectives included PARP-1 and SLFN11 immunohistochemical expression, MGMT promoter methylation, and circulating tumor cell quantification. Results No significant difference in 4-month PFS was noted between TMZ/veliparib (36%) and TMZ/placebo (27%; P = .19); median OS was also not improved significantly with TMZ/veliparib (8.2 months; 95% CI, 6.4 to 12.2 months; v 7.0 months; 95% CI, 5.3 to 9.5 months; P = .50). However, ORR was significantly higher in patients receiving TMZ/veliparib compared with TMZ/placebo (39% v 14%; P = .016). Grade 3/4 thrombocytopenia and neutropenia more commonly occurred with TMZ/veliparib: 50% versus 9% and 31% versus 7%, respectively. Significantly prolonged PFS (5.7 v 3.6 months; P = .009) and OS (12.2 v 7.5 months; P = .014) were observed in patients with SLFN11-positive tumors treated with TMZ/veliparib. Conclusion Four-month PFS and median OS did not differ between the two arms, whereas a significant improvement in ORR was observed with TMZ/veliparib. SLFN11 expression was associated with improved PFS and OS in patients receiving TMZ/veliparib, suggesting a promising biomarker of PARP-inhibitor sensitivity in SCLC.
Project description:PurposeTo determine the antitumor efficacy and tolerability of combination temozolomide (TMZ) and veliparib (ABT-888) in patients with advanced, sorafenib-refractory hepatocellular carcinoma (HCC).MethodsThis single-arm phase II trial enrolled patients with pathologically confirmed, sorafenib-refractory HCC. All patients received 40 mg ABT-888 PO daily on days 1-7 and 150 mg/m(2) TMZ PO daily on days 1-5 of a 28-day cycle. The primary endpoint was objective response rate (ORR) at 2 months. Secondary endpoints included overall survival (OS), progression-free survival (PFS), and toxicity profile. Tumor response was assessed every 2 cycles using RECIST criteria, and toxicities were assessed using CTCAE v4.03.ResultsWe enrolled 16 patients in the first phase of the trial, but the study was discontinued due to a poor ORR; only four patients (25 %) had SD after 2 cycles. Twelve patients (75 %) were taken off study after 2 months of treatment; 10 of these had disease progression. Two patients (13 %) were taken off study due to severe toxicity, and one patient (6 %) died from non-treatment-related liver failure. One patient had SD for 16 months, receiving 11 cycles of therapy before being taken off study. The most common grade 3 treatment-related toxicities included vomiting (n = 2), thrombocytopenia (n = 2), nausea (n = 1), and anemia (n = 1). The median PFS was 1.9 months, and median OS was 13.1 months.ConclusionThe combination of TMZ and ABT-888 is well tolerated in patients with advanced HCC. However, the regimen failed to show survival benefit. CLINICALTRIALS.Gov identifierNCT01205828.
Project description:Androgen receptor-mediated transcription is directly coupled with the induction of DNA damage, and castration-resistant tumor cells exhibit increased activity of poly (ADP-ribose) polymerase (PARP)-1, a DNA repair enzyme. This study assessed the efficacy and safety of low dose oral PARP inhibitor veliparib (ABT-888) and temozolomide (TMZ) in docetaxel-pretreated patients with metastatic castration-resistant prostate cancer (mCRPC) in a single-arm, open-label, pilot study. Patients with mCRPC progressing on at least one docetaxel-based therapy and prostate specific antigen (PSA) ≥ 2 ng/mL were treated with veliparib 40 mg twice daily on days 1-7 and TMZ once daily (150 mg/m(2)/day cycle 1; if well tolerated then 200 mg/m(2)/day cycle 2 onwards) on days 1-5 q28 days. Patients received 2 (median) treatment cycles (range, 1-9). The primary endpoint was confirmed PSA response rate (decline ≥ 30 %). Twenty-six eligible patients were enrolled, 25 evaluable for PSA response. Median baseline PSA was 170 ng/mL. Two patients had a confirmed PSA response (8.0 %; 95 % CI: 1.0-26.0), 13 stable PSA, and 10 PSA progression. The median progression-free survival was 9 weeks (95 % CI: 7.9-17) and median overall survival 39.6 weeks (95 % CI: 26.6-not estimable). The most frequent treatment-emergent adverse events (AEs) were thrombocytopenia (77 %), anemia (69 %), fatigue (50 %), neutropenia (42 %), nausea (38 %), and constipation (23 %). Grade 3/4 AEs occurring in > 10 % of patients were thrombocytopenia (23 %) and anemia (15 %). Veliparib and TMZ combination was well tolerated but with modest activity. Biomarker analysis supported the proof of concept that this combination has some antitumor activity in mCRPC.
Project description:Small cell lung cancer is initially highly responsive to cisplatin and etoposide but in almost every case becomes rapidly chemoresistant, leading to death within 1 year. We modeled acquired chemoresistance in vivo using a series of patient-derived xenografts to generate paired chemosensitive and chemoresistant cancers. Multiple chemoresistant models demonstrated suppression of SLFN11, a factor implicated in DNA-damage repair deficiency. In vivo silencing of SLFN11 was associated with marked deposition of H3K27me3, a histone modification placed by EZH2, within the gene body of SLFN11, inducing local chromatin condensation and gene silencing. Inclusion of an EZH2 inhibitor with standard cytotoxic therapies prevented emergence of acquired resistance and augmented chemotherapeutic efficacy in both chemosensitive and chemoresistant models of small cell lung cancer.