Unknown

Dataset Information

0

ENSO-induced co-variability of Salinity, Plankton Biomass and Coastal Currents in the Northern Gulf of Mexico.


ABSTRACT: The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observations, here we show that El Niño - Southern Oscillation (ENSO) is a main driver of the interannual variability in salinity and plankton biomass during winter and spring. Composite analysis of salinity and plankton biomass anomalies shows a strong asymmetry between El Niño and La Niña impacts, with much larger amplitude and broader areas affected during El Niño conditions. Further analysis of the model simulation reveals significant coastal circulation anomalies driven by changes in salinity and winds. The coastal circulation anomalies in turn largely determine the spatial extent and distribution of the ENSO-induced plankton biomass variability. These findings highlight that ENSO-induced changes in salinity, plankton biomass, and coastal circulation across the northern GoM are closely interlinked and may significantly impact the abundance and distribution of fish and invertebrates.

SUBMITTER: Gomez FA 

PROVIDER: S-EPMC6336811 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

ENSO-induced co-variability of Salinity, Plankton Biomass and Coastal Currents in the Northern Gulf of Mexico.

Gomez Fabian A FA   Lee Sang-Ki SK   Hernandez Frank J FJ   Chiaverano Luciano M LM   Muller-Karger Frank E FE   Liu Yanyun Y   Lamkin John T JT  

Scientific reports 20190117 1


The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observati  ...[more]

Similar Datasets

| S-EPMC6328475 | biostudies-literature
| S-EPMC4574113 | biostudies-literature
| S-EPMC8384081 | biostudies-literature
| S-EPMC5565443 | biostudies-other
| S-EPMC7596294 | biostudies-literature
| S-EPMC3130780 | biostudies-literature
| S-EPMC7685172 | biostudies-literature
| S-EPMC9415429 | biostudies-literature
| S-EPMC9424712 | biostudies-literature
2021-05-04 | GSE138935 | GEO