Unknown

Dataset Information

0

Macrophage reprogramming by negatively charged membrane phospholipids controls infection.


ABSTRACT: Extracellular vesicles (ECVs) are heterogeneous membrane-enclosed structures containing proteins, nucleic acids, and lipids that participate in intercellular communication by transferring their contents to recipient cells. Although most of the attention has been directed at the biologic effect of proteins and microRNA, the contribution of phospholipids present in ECVs on cellular activation has not been extensively addressed. We investigated the biologic effect of phosphatidylserine (PS) and phosphatidylcholine (PC), 2 phospholipids highly abundant in ECVs. A transcriptomic analysis revealed that ∼4700 genes were specifically modified by exposing peritoneal macrophages to PS or PC liposomes in vivo. Among them, the expression of several chemokines and cytokines was highly upregulated by PS liposome treatment, translating into a massive neutrophil infiltration of the peritoneum capable of neutralizing a septic polymicrobial insult. Both the l and d stereoisomers of PS induced the same response, suggesting that the effect was related to the negative charge of the phospholipid head. We concluded that an increase in the internal negative charge of the cell triggers a signaling cascade activating an innate immune response capable of controlling infection.-Cauvi, D. M., Hawisher, D., Dores-Silva, P. R., Lizardo, R. E., De Maio, A. Macrophage reprogramming by negatively charged membrane phospholipids controls infection.

SUBMITTER: Cauvi DM 

PROVIDER: S-EPMC6338646 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2018-11-02 | GSE115489 | GEO
| PRJNA475156 | ENA
| S-EPMC2998625 | biostudies-literature
| S-EPMC8085201 | biostudies-literature
| S-EPMC3161752 | biostudies-literature
| S-EPMC7036746 | biostudies-literature
| S-EPMC2822702 | biostudies-literature