Project description:Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations. We then find that, globally, the average distribution temperature of high-Si plant clades is 1.2 °C higher than that of low-Si clades. Across China, leaf Si concentrations increase with temperature in high-Si plants (wheat and rice), but not in low-Si plants (weeping willow and winter jasmine). From an evolutionary perspective, 77% of high-Si families (>10 mg Si g-1 DW) originate during warming episodes, while 86% of low-Si families (<1 mg Si g-1 DW) originate during cooling episodes. On average, Earth's temperature during the emergence of high-Si families is 3 °C higher than that of low-Si families. Taken together, our evidence suggests that plant Si variation is closely related to global and long-term climate change.
Project description:It has been known that PSI and PSII supercomplexes are involved in the linear and cyclic electron transfer, dynamics of light capture, and the repair cycle of PSII under environmental stresses. However, evolutions of photosystem (PS) complexes from evolutionarily divergent species are largely unknown. Here, we improved the blue native polyacrylamide gel electrophoresis (BN-PAGE) separation method and successfully separated PS complexes from all terrestrial plants. It is well known that reversible D1 protein phosphorylation is an important protective mechanism against oxidative damages to chloroplasts through the PSII photoinhibition-repair cycle. The results indicate that antibody-detectable phosphorylation of D1 protein is the latest event in the evolution of PS protein phosphorylation and occurs exclusively in seed plants. Compared to angiosperms, other terrestrial plant species presented much lower contents of PS supercomplexes. The amount of light-harvesting complexes II (LHCII) trimers was higher than that of LHCII monomers in angiosperms, whereas it was opposite in gymnosperms, pteridophytes, and bryophytes. LHCII assembly may be one of the evolutionary characteristics of vascular plants. In vivo chloroplast fluorescence measurements indicated that lower plants (bryophytes especially) showed slower changes in state transition and nonphotochemical quenching (NPQ) in response to light shifts. Therefore, the evolution of PS supercomplexes may be correlated with their acclimations to environments.
Project description:Proteinaceous catalysts found in extant biology are products of life that were potentially derived through prolonged periods of evolution. Given their complexity, it is reasonable to assume that they were not accessible to prebiotic chemistry as such. Nevertheless, the dependence of many enzymes on metal ions or metal-ligand cores suggests that catalysis relevant to biology could also be possible with just the metal centers. Given their availability on the Hadean/Archean Earth, it is fair to conjecture that metal ions could have constituted the first forms of catalysts. A slow increase of complexity that was facilitated through the provision of organic ligands and amino acids/peptides possibly allowed for further evolution and diversification, eventually demarcating them into specific functions. Herein, we summarize some key experimental developments and observations that support the possible roles of metal catalysts in shaping the origins of life. Further, we also discuss how they could have evolved into modern-day enzymes, with some suggestions for what could be the imminent next steps that researchers can pursue, to delineate the putative sequence of catalyst evolution during the early stages of life.
Project description:The R2R3-MYB transcription factors play critical roles in various processes in embryophytes (land plants). Here, we identified genes encoding R2R3-MYB proteins from rhodophytes, glaucophytes, Chromista, chlorophytes, charophytes, and embryophytes. We classified the R2R3-MYB genes into three subgroups (I, II, and III) based on their evolutionary history and gene structure. The subgroup I is the most ancient group that includes members from all plant lineages. The subgroup II was formed before the divergence of charophytes and embryophytes. The subgroup III genes form a monophyletic group and only comprise members from land plants with conserved exon-intron structure. Each subgroup was further divided into multiple clades. The subgroup I can be divided into I-A, I-B, I-C, and I-D. The I-A, I-B, and I-C are the most basal clades that have originated before the divergence of Archaeplastida. The I-D with the II and III subgroups form a monophyletic group, containing only green plants. The II and III subgroups form another monophyletic group with Streptophyta only. Once on land, the subgroup III genes have experienced two rounds of major expansions. The first round occurred before the origin of land plants, and the second round occurred after the divergence of land plants. Due to significant gene expansion, the subgroup III genes have become the predominant group of R2R3-MYBs in land plants. The highly unbalanced pattern of birth and death evolution of R2R3-MYB genes indicates their important roles in the successful adaptation and massive radiation of land plants to occupy a multitude of terrestrial environments.
Project description:The SNF1-related protein kinase 2 (SnRK2) family includes key regulators of osmostress and abscisic acid (ABA) responses in angiosperms and can be classified into three subclasses. Subclass III SnRK2s act in the ABA response while ABA-nonresponsive subclass I SnRK2s are regulated through osmostress. Here we report that an ancient subclass III SnRK2-based signalling module including ABA and an upstream Raf-like kinase (ARK) exclusively protects the moss Physcomitrella patens from drought. Subclass III SnRK2s from both Arabidopsis and from the semiterrestrial alga Klebsormidium nitens, which contains all the components of ABA signalling except ABA receptors, complement Physcomitrella snrk2 - mutants, whereas Arabidopsis subclass I SnRK2 cannot. We propose that the earliest land plants developed the ABA/ARK/subclass III SnRK2 signalling module by recruiting ABA to regulate a pre-existing dehydration response and that subsequently a novel subclass I SnRK2 system evolved in vascular plants conferring osmostress protection independently from the ancient system.
Project description:Background and aimsAllometric scaling between stomata and xylem for terrestrial woody plants is a widely observed pattern that may be constrained by water transport. Floating-leaved plants, a particular life form of aquatic plants, have leaves in direct contact with both air and water and a poorly developed xylem that may not be limited by water supply as for terrestrial plants. However, whether such an allometric scaling relationship still exists in floating-leaved plants has not been explored.MethodsWe analysed 31 floating-leaved species/varieties with a range in leaf area covering six orders of magnitude. For all 31 floating-leaved plants, we studied the allometric relationships between leaf area and petiole transverse area, and between total stomatal area and petiole vascular area.Key resultsThe slopes of both relationships were similar to the slope of the allometric relationship (1.23) between total stomatal area and xylem area of 53 terrestrial plants. However, for ten of them with xylem that can be clearly defined, the strong positive relationship between total stomatal area and petiole xylem area had a significantly smaller slope than that of terrestrial plants (0.64 vs. 1.23). Furthermore, after considering phylogeny, the scaling relationships between total stomatal area and petiole traits in floating-leaved plants remained significant.ConclusionsWe speculated that for floating-leaved plants, the hyperallometric relationship (slope >1) between the construction of leaf/stoma and petiole was promoted by the high demand for photosynthesis and thus more leaves/stomata. While the hypoallometric relationship (slope <1) between stomatal and xylem area was related more to hydraulic processes, the selection pressure on stomata was lower than xylem of floating-leaved plants. Allometric relationships among the hydraulic traits on water transport of aquatic plants are the result of natural selection to achieve maximum carbon gain, which is similar to terrestrial plants.
Project description:Glutathione-S-transferases (GSTs) are encoded by genes belonging to a wide ubiquitous family in aerobic species and catalyze the conjugation of electrophilic substrates to glutathione (GSH). GSTs are divided in different classes, both in plants and animals. In plants, GSTs function in several pathways, including those related to secondary metabolites biosynthesis, hormone homeostasis, defense from pathogens and allow the prevention and detoxification of damage from heavy metals and herbicides. 1107 GST protein sequences from 20 different plant species with sequenced genomes were analyzed. Our analysis assigns 666 unclassified GSTs proteins to specific classes, remarking the wide heterogeneity of this gene family. Moreover, we highlighted the presence of further subclasses within each class. Regarding the class GST-Tau, one possible subclass appears to be present in all the Tau members of ancestor plant species. Moreover, the results highlight the presence of members of the Tau class in Marchantiophytes and confirm previous observations on the absence of GST-Tau in Bryophytes and green algae. These results support the hypothesis regarding the paraphyletic origin of Bryophytes, but also suggest that Marchantiophytes may be on the same branch leading to superior plants, depicting an alternative model for green plants evolution.
Project description:Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
Project description:The aim of this work was to synthesize selected thiophene-derived aminophosphonic systems and evaluate the phytotoxicity of newly obtained products according to the OECD 208 Guideline. Seven new thiophene-derived N-substituted dimethyl aminomethylphosphonic acid esters 2a-h were synthesized by the addition of an appropriate phosphite to azomethine bond of starting Schiff bases 1a-h, and NMR spectroscopic properties of aminophosphonates were investigated. These eight compounds were analyzed in regard to their phytotoxicity towards two plants, radish (Raphanus sativus) and oat (Avena sativa). On the basis of the obtained results, it was found that tested aminophosphonates 2a-h showed an ecotoxicological impact against selected plants, albeit to various degrees.
Project description:Microrchidia (MORC) proteins have been described as epigenetic regulators and plant immune mediators in Arabidopsis. Typically, plant and animal MORC proteins contain a hallmark GHKL-type (Gyrase, Hsp90, Histidine kinase, MutL) ATPase domain in their N-terminus. Here, 356 and 83 MORC orthologues were identified in 60 plant and 27 animal genomes. Large-scale MORC sequence analyses revealed the presence of a highly conserved motif composition that defined as the MORC domain. The MORC domain was present in both plants and animals, indicating that it originated in the common ancestor before the divergence of plants and animals. Phylogenetic analyses showed that MORC genes in both plant and animal lineages were clearly classified into two major groups, named Plants-Group I, Plants-Group II and Animals-Group I, Animals-Group II, respectively. Further analyses of MORC genes in green plants uncovered that Group I can be subdivided into Group I-1 and Group I-2. Group I-1 only contains seed plant genes, suggesting that Group I-1 and I-2 divergence occurred at least before the emergence of spermatophytes. Group I-2 and Group II have undergone several gene duplications, resulting in the expansion of MORC gene family in angiosperms. Additionally, MORC gene expression analyses in Arabidopsis, soybean, and rice revealed a higher expression level in reproductive tissues compared with other organs, and showed divergent expression patterns for several paralogous gene pairs. Our studies offered new insights into the origins, phylogenetic relationships, and expressional patterns of MORC family members in green plants, which would help to further reveal their functions as plant epigenetic regulators.