Unknown

Dataset Information

0

Systematic Dissection of Sequence Elements Controlling ?70 Promoters Using a Genomically Encoded Multiplexed Reporter Assay in Escherichia coli.


ABSTRACT: Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10898 ?70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our data set using a simple log-linear statistical model. Simple neural network models explain >95% of the variance in our data set by capturing nonlinear interactions with the spacer, background, and UP elements.

SUBMITTER: Urtecho G 

PROVIDER: S-EPMC6389444 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Systematic Dissection of Sequence Elements Controlling σ70 Promoters Using a Genomically Encoded Multiplexed Reporter Assay in Escherichia coli.

Urtecho Guillaume G   Tripp Arielle D AD   Insigne Kimberly D KD   Kim Hwangbeom H   Kosuri Sriram S  

Biochemistry 20181221 11


Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E.  ...[more]

Similar Datasets

2018-04-01 | GSE108535 | GEO
| PRJNA427577 | ENA
2016-06-01 | E-GEOD-75661 | biostudies-arrayexpress
| S-EPMC4957403 | biostudies-literature
2016-06-01 | GSE75661 | GEO
| S-EPMC153755 | biostudies-literature
| S-EPMC1797217 | biostudies-literature
2012-02-26 | E-GEOD-31982 | biostudies-arrayexpress