Project description:CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO2 electrolysis. We determine the impact of electrowetting on the electrochemical performance by analyzing the Faradaic efficiency for CO at industrially relevant current density. The characterization of used GDEs with X-ray photoelectron spectroscopy (XPS) and X-Ray diffraction (XRD) reveals a potential-dependent degradation, which can be explained through chemical polytetrafluorethylene (PTFE) degradation and/or physical erosion of PTFE through the restructuring of the silver surface. Our results further suggest that electrowetting-induced flooding lets the Faradaic efficiency for CO drop below 40% after only 30 min of electrolysis. We conclude that the effect of electrowetting has to be managed more carefully before the investigated carbon-free GDEs can compete with carbon-based GDEs as cathodes for CO2 electrolysis. Further, not only the conductive phase (such as carbon), but also the binder (such as PTFE), should be carefully selected for stable CO2 reduction.
Project description:A key challenge for carbon dioxide reduction on Cu-based catalysts is its low faradic efficiency (FE) and selectivity towards higher-value products, e.g., ethylene. The main factor limiting the possibilities of long-term applications of Cu-based gas diffusion electrodes (GDE) is a relatively fast drop in the catalytic activity of copper layers. One of the solutions to the catalyst stability problem may be an in situ reconstruction of the catalyst during the process. It was observed that the addition of a small amount of copper lactate to the electrolyte results in increased Faradaic efficiency for ethylene formation. Moreover, the addition of copper lactate increases the lifetime of the catalytic layer ca. two times and stabilizes the Faradaic efficiency of the electroreduction of CO2 to ethylene at ca. 30%. It can be concluded that in situ deposition of copper through reduction of copper lactate complexes present in the electrolyte provides new, stable, and selective active sites, promoting the reduction of CO2 to ethylene.
Project description:We fabricate polymer-based gas diffusion electrodes with controllable microstructure for the electrochemical reduction of CO2, by means of electrospinning and physical vapor deposition. We show that the microstructure of the electrospun substrate is affecting the selectivity of a Cu catalyst, steering it from H2 to C2H4 and other multicarbon products. Specifically, we demonstrate that gas diffusion electrodes with small pores (e.g. mean pore size 0.2 μm) and strong hydrophobicity (e.g. water entry pressure >1 bar) are necessary for achieving a remarkable faradaic efficiency of ∼50% for C2H4 and ∼75% for C≥2 products in neutral 1M KCl electrolyte at 200 mA cm-2. We observe a gradual shift from C2H4 to CH4 to H2 during long-term electrochemical reduction of CO2, which we ascribe to hygroscopic carbonate precipitation in the gas diffusion electrode resulting in flooding of the Cu catalyst by the electrolyte. We demonstrate that even with minimal electrolyte overpressure of 50 mbar, gas diffusion electrodes with large pores (mean pore size 1.1 μm) lose selectivity to carbon products completely, suddenly, and irreversibly in favor of H2. In contrast, we find that gas diffusion electrodes with small pore size (mean pore size 0.2 μm) and strong hydrophobicity (water entry pressure ∼5 bar) are capable of resisting up to 1 bar of electrolyte overpressure during CO2RR without loss of selectivity. We rationalize these experimental results in the context of a double phase boundary reactivity, where an electrolyte layer covers the Cu catalyst and thus governs local CO2 availability. Our results emphasize the pivotal role of microstructure and hydrophobicity in promoting high C≥2 product selectivity and long-term stability in CO2RR flow cells.
Project description:Gas diffusion electrocrystallization (GDEx) was explored for the synthesis of iron oxide nanoparticles (IONPs). A gas-diffusion cathode was employed to reduce oxygen, producing hydroxyl ions (OH-) and oxidants (H2O2 and HO2 -), which acted as reactive intermediates for the formation of stable IONPs. The IONPs were mainly composed of pure magnetite. However, their composition strongly depended on the presence of a weak acid, i.e., ammonium chloride (NH4Cl), and on the applied electrode potential. Pure magnetite was obtained due to the simultaneous action of H2O2 and the buffer capacity of the added NH4Cl. Magnetite and goethite were identified as products under different operating conditions. The presence of NH4Cl facilitated an acid-base reaction and, in some cases, led to cathodic deprotonation, forming a surplus of hydrogen peroxide, while adding the weak acid promoted gradual changes in the pH by slightly enhancing H2O2 production when increasing the applied potential. This also resulted in smaller average crystallite sizes as follows: 20.3 ± 0.6 at -0.350 V, 14.7 ± 2.1 at -0.550 and 12.0 ± 2.0 at -0.750 V. GDEx is also demonstrated to be a green, effective, and efficient cathodic process to recover soluble iron to IONPs, being capable of removing >99% of the iron initially present in the solution.
Project description:To mitigate flooding associated with the gas diffusion layer (GDL) during electroreduction of CO2 , we report a hydrophobicity-graded hydrophobic GDL (HGGDL). Coating uniformly dispersed polytetrafluoroethylene (PTFE) binders on the carbon fiber skeleton of a hydrophilic GDL uniformizes the hydrophobicity of the GDL and also alleviates the gas blockage of pore channels. Further adherence of the PTFE macroporous layer (PMPL) to one side of the hydrophobic carbon fiber skeleton was aided by sintering. The introduced PMPL shows an appropriate pore size and enhanced hydrophobicity. As a result, the HGGDL offers spatial control of the hydrophobicity and hence water and gas transport over the GDL. Using a nickel-single-atom catalyst, the resulting HGGDL electrode provided a CO faradaic efficiency of over 83 % at a constant current density of 75 mA cm-2 for 103 h operation in a membrane electrode assembly, which is more than 16 times that achieved with a commercial GDL.
Project description:The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.
Project description:Gas diffusion electrodes (GDEs) in CO2 reduction reaction (CO2RR) alleviate the mass transfer limitation of gaseous reagents, which is beneficial for reducing CO2 into valuable chemicals. GDEs offer higher current densities compared to electrodes immersed in the electrolyte. Disclosing the roles of different structural parameters in tuning the performance of the GDEs is essential to exert the potential of catalysts and to meet potential large-scale industrial applications of the CO2RR. A novel layer structure for the airbrush-type spray fabrication of GDEs was designed and optimised, comprising a carbon-based gas-diffusion layer, a PEEK fabric, a Ni mesh, a carbon-integrated catalyst layer, and a PTFE top layer. It was shown that adjusting the carbon material in the gas diffusion and the catalyst layer impacts the selectivity of the CO2RR due to the modulation of the pore network. This work disclosed a practical and scalable but also an easily transferable pathway for preparing GDEs and offered an idea of how to tune the significant parameters of GDEs for optimising their CO2RR performance.
Project description:Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH- and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2 RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH- and H2 O activity that in turn can possibly affect activity, stability, and selectivity of the CO2 RR. We determine the local OH- and H2 O activity in close proximity to a CO2 -converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2 RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.