Project description:Despite advances in conventional treatment modalities for malignant brain tumors-surgery, radiotherapy, and chemotherapy-the prognosis for patients with high-grade astrocytic tumor remains dismal. The highly heterogeneous and diffuse nature of astrocytic tumors calls for the development of novel therapies. Advances in genomic and proteomic research indicate that treatment of brain tumor patients can be increasingly personalized according to the characteristics of the targeted tumor and its environment. Consequently, during the last two decades, a novel class of investigative drug candidates for the treatment of central nervous system neoplasia has emerged: recombinant fusion protein conjugates armed with cytotoxic agents targeting tumor-specific antigens. The clinical applicability of the tumor-antigen-directed cytotoxic proteins as a safe and viable therapy for brain tumors is being investigated. Thus far, results from ongoing clinical trials are encouraging, as disease stabilization and patient survival prolongation have been observed in at least 109 cases. This paper summarizes the major findings pertaining to treatment with the different antiglioma cytotoxins at the preclinical and clinical stages.
Project description:Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.
Project description:Purpose of reviewTo summarize the mechanisms of tumor angiogenesis and resistance to antiangiogenic therapy, and the influence on tumor microenvironment.Recent findingsSeveral clinical trials have investigated the activity of anti-VEGF monoclonal antibodies and tyrosine kinase inhibitors in glioblastoma, shedding the light on their limitations in terms of disease control and survival. We have outlined the mechanisms of resistance to antiangiogenic therapy, including vessel co-option, hypoxic signaling in response to vessel destruction, modulation of glioma stem cells, and trafficking of tumor-associated macrophages in tumor microenvironment. Moreover, novel generation of antiangiogenic compounds for glioblastoma, including small interfering RNAs and nanoparticles, as a delivery vehicle, could enhance selectivity and reduce side effects of treatments. There is still a rationale for the use of antiangiogenic therapy, but a better understanding of vascular co-option, vascular mimicry, and dynamic relationships between immunosuppressive microenvironment and blood vessel destruction is crucial to develop next-generation antiangiogenic compounds.
Project description:Cysteine cathepsins are a group of proteases involved in many physiological and pathological processes. Yet, the selective detection and inhibition of individual cathepsins is still challenging. This editorial is discussing the context of a recent work introducing a designed ankyrin repeat protein (DARPin) as novel approach for selective targeting of the protease cathepsin B.
Project description:The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.
Project description:The purpose of this pilot study was to investigate the feasibility of a 3-week constraint-induced movement therapy program in children with brain tumors and upper extremity hemiplegia and to describe resultant change in extremity use.Affected arm use, health-related quality of life, and parent-reported feasibility of program participation were measured before and after the intervention and at a 3-month follow-up visit.All 9 participants completed the entire study. The quality and amount of affected arm use improved significantly; gains were maintained at the 3-month follow-up evaluation. Some parents (44%) reported that program participation was difficult; however, all reported satisfaction with the program. Participants did not experience negative changes in health-related quality of life during the intervention, indicating that they tolerated the program well.Findings suggest that a child with hemiplegia as a result of a brain tumor can adhere to and benefit from a constraint-induced movement therapy program.
Project description:Human trophoblast cell-surface antigen-2 (Trop-2) is a membrane glycoprotein involved in cell proliferation and motility, frequently overexpressed in epithelial tumors. Thus, it represents an attractive target for anticancer therapies. Sacituzumab govitecan (SG) is a third-generation antibody-drug conjugate, consisting of an anti-Trop-2 monoclonal antibody (hRS7), a hydrolyzable linker, and a cytotoxin (SN38), which inhibits topoisomerase 1. Specific pharmacological features, such as the high antibody to payload ratio, the ultra-toxic nature of SN38, and the capacity to kill surrounding tumor cells (the bystander effect), make SG a very promising drug for cancer treatment. Indeed, unprecedented results have been observed with SG in patients with heavily pretreated advanced triple-negative breast cancer and urothelial carcinomas, and the drug has already received approval for these indications. These results are coupled with a manageable toxicity profile, with neutropenia and diarrhea as the most frequent adverse events, mainly of grades 1-2. While several trials are exploring SG activity in different tumor types and settings, potential biomarkers of response are under investigation. Among these, Trop-2 overexpression and the presence of BRCA1/2 mutations seem to be the most promising. We review the available literature concerning SG, with a focus on its toxicity spectrum and possible biomarkers of its response.
Project description:Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Project description:Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood-brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A "Trojan horse" method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the antibody to bind to the specific target(s). Finally, the current clinical trials are reviewed, showing the most recent progress of attractive approaches to deliver therapeutic antibodies across the BBB aiming at the specific antigen.