Ontology highlight
ABSTRACT: Objectives
MOF (males absent on the first) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. In mammals, MOF plays critical roles in transcription activation by acetylating histone H4 at K16. Human MOF (hMOF) essentially participates in behaviour of several human cancers. However, its role in human oral tongue squamous cell carcinoma (OTSCC) remains elusive, but we propose that hMOF regulates OTSCC cell population growth.Materials and methods
Real time PCR and western blot analysis were applied, and it was found that hMOF level was up-regulated in human OTSCC. High hMOF expression predicted poor overall and disease-free survival. hMOF knockdown attenuated OTSCC cell growth and transformation.Results
EZH2 (enhancer of zeste homolog 2) was up-regulated in human OTSCC tissues and its level positively correlated with level of hMOF. hMOF knockdown inhibited EZH2 expression by reducing its promoter activity. Moreover, we have demonstrated that EZH2 was critically essential for function of hMOF in human OTSCC.Conclusions
Human males absent on the first regulated OSTCC growth through EZH2, thus EZH2 may serve as a candidate for anti-OTSCC therapy.
SUBMITTER: Li Q
PROVIDER: S-EPMC6496449 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
Li Qihong Q Sun Haiyan H Shu Yao Y Zou Xuan X Zhao Yantao Y Ge Cheng C
Cell proliferation 20150601 4
<h4>Objectives</h4>MOF (males absent on the first) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. In mammals, MOF plays critical roles in transcription activation by acetylating histone H4 at K16. Human MOF (hMOF) essentially participates in behaviour of several human cancers. However, its role in human oral tongue squamous cell carcinoma (OTSCC) remains elusive, but we propose that hMOF regulates OTSCC cell population growth.<h4>Materials and metho ...[more]