Project description:Chronic kidney disease (CKD) has a major impact on public health, which could progress to end-stage kidney disease (ESRD) and consume many medical resources. Currently, the treatment for CKD has many flaws, so more effective treatment tools are urgently required for CKD. Mesenchymal stem cells (MSCs) are primitive cells with self-renewal and proliferation capacity and differentiation potential. Extensive preclinical and clinical data has shown that cell-based therapies using MSCs can modulate immunity, inhibit inflammatory factors, and improve renal function in CKD, suggesting that MSCs have the potential to be a new, effective therapeutic tool for CKD. In this review, we will describe different kinds of MSCs and MSCs products for the treatment of CKD in experimental models and clinical trials, potential signaling pathways, therapeutic efficacy, and critical issues that need to be addressed before therapeutic application in humans.
Project description:Mesenchymal stem cells (MSCs) are promising source of cell-based regenerative therapy. In consideration of the risk of allosensitization, autologous MSC-based therapy is preferred over allogenic transplantation in patients with chronic kidney disease (CKD). However, it remains uncertain whether adequate cell functionality is maintained under uremic conditions. As chronic inflammation and oxidative stress in CKD may lead to the accumulation of senescent cells, we investigated cellular senescence of CKD MSCs and determined the effects of metformin on CKD-associated cellular senescence in bone marrow MSCs from sham-operated and subtotal nephrectomized mice and further explored in adipose tissue-derived MSCs from healthy kidney donors and patients with CKD. CKD MSCs showed reduced proliferation, accelerated senescence, and increased DNA damage as compared to control MSCs. These changes were significantly attenuated following metformin treatment. Lipopolysaccharide and transforming growth factor β1-treated HK2 cells showed lower tubular expression of proinflammatory and fibrogenesis markers upon co-culture with metformin-treated CKD MSCs than with untreated CKD MSCs, suggestive of enhanced paracrine action of CKD MSCs mediated by metformin. In unilateral ureteral obstruction kidneys, metformin-treated CKD MSCs more effectively attenuated inflammation and fibrosis as compared to untreated CKD MSCs. Thus, metformin preconditioning may exhibit a therapeutic benefit by targeting accelerated senescence of CKD MSCs.
Project description:Kidney disease can be either acute kidney injury (AKI) or chronic kidney disease (CKD) and it can lead to the development of functional organ failure. Mesenchymal stem cells (MSCs) are derived from a diverse range of human tissues. They are multipotent and have immunomodulatory effects to assist in the recovery from tissue injury and the inhibition of inflammation. Numerous studies have investigated the feasibility, safety, and efficacy of MSC-based therapies for kidney disease. Although the exact mechanism of MSC-based therapy remains uncertain, their therapeutic value in the treatment of a diverse range of kidney diseases has been studied in clinical trials. The use of MSCs is a promising therapeutic strategy for both acute and chronic kidney disease. The mechanism underlying the effects of MSCs on survival rate after transplantation and functional repair of damaged tissue is still ambiguous. The paracrine effects of MSCs on renal recovery, optimization of the microenvironment for cell survival, and control of inflammatory responses are thought to be related to their interaction with the damaged kidney environment. This review discusses recent experimental and clinical findings related to kidney disease, with a focus on the role of MSCs in kidney disease recovery, differentiation, and microenvironment. The therapeutic efficacy and current applications of MSC-based kidney disease therapies are also discussed.
Project description:Mesenchymal stem cell (MSC) transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD) on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK) with CKD (CKD-RK-MSC) and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD). MSCs from rats with adenine nephropathy (CKD-AD-MSC) also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.
Project description:IntroductionMesenchymal stem cells (MSCs) play a central role in the remediation of cell and tissue damage. Erythropoietin (EPO) may enhance the beneficial influence of MSCs during recovery from tissue and organ injuries. Microvesicles (MVs) released from MSCs contribute to the restoration of kidney damage. We studied the influence of EPO on MVs derived from MSCs, and the protective effects of these factors in subjects with chronic kidney disease (CKD).MethodsThe MVs derived from untreated MSCs (MSC-MVs) or from MSCs incubated in different concentrations of EPO (1, 10, 100, and 500 IU/ml EPO-MVs) were used to treat renal injury of unilateral ureteral obstruction (UUO) in vivo, and transforming growth factor-β1 (TGF-β1)-induced fibrosis in a human renal proximal tubular epithelial (HK2) cell line in vitro. Western blot and reverse transcription polymerase chain reaction (RT-PCR) analyses were used to evaluate the expression of epithelial and mesenchymal markers in the renal tissue and HK2 cells. Flow cytometry was used to assess apoptosis within the HK2 cells, and microRNA (miRNA) microarray assays were used to determine the expression profiles of miRNA in the MSC-MVs and EPO-MVs.ResultsCompared to MSC-MVs (untreated), there was a significant increase in the number of EPO-MVs derived from MSCs treated with 1-100 IU/ml EPO, and these EPO-MVs had a greater benefit in UUO mice on days 7 and 14. Moreover, the EPO-MVs had a better restorative effect following TGF-β1-induced fibrosis in HK2 cells at 24 h and 48 h. The flow cytometry results revealed that both types of MVs, especially EPO-MVs, play an important anti-apoptotic role in HK2 cells treated with TGF-β1. The miRNA profiles of the MVs revealed that EPO-MVs changed 212 miRNAs (fold-change ≥ 1.5), including miR-299, miR-499, miR-302, and miRNA-200, and that 70.28 % of these changes involved upregulation. The changed miRNA in EPO-MVs may have contributed to their enhanced protective effects following renal injury compared to MSC-MVs.ConclusionsThere was a dose-dependent increase in the level of EPO-MVs within the range of 1-100 IU/ml EPO. Although both MSC-MVs and EPO-MVs protect the kidney from fibrosis-related damage, there is a superior effect of EPO-MVs.
Project description:BackgroundCell-based therapies are being developed to meet the need for curative therapy in chronic kidney disease (CKD). Bone marrow- (BM-) derived mesenchymal stromal cells (MSCs) enhance tissue repair and induce neoangiogenesis through paracrine action of secreted proteins and extracellular vesicles (EVs). Administration of allogeneic BM MSCs is less desirable in a patient population likely to require a kidney transplant, but potency of autologous MSCs should be confirmed, given previous indications that CKD-induced dysfunction is present. While the immunomodulatory capacity of CKD BM MSCs has been established, it is unknown whether CKD affects wound healing and angiogenic potential of MSC-derived CM and EVs.MethodsMSCs were cultured from BM obtained from kidney transplant recipients (N = 15) or kidney donors (N = 17). Passage 3 BM MSCs and BM MSC-conditioned medium (CM) were used for experiments. EVs were isolated from CM by differential ultracentrifugation. BM MSC differentiation capacity, proliferation, and senescence-associated β-galactosidase activity was assessed. In vitro promigratory and proangiogenic capacity of BM MSC-derived CM and EVs was assessed using an in vitro scratch wound assay and Matrigel angiogenesis assay.ResultsHealthy and CKD BM MSCs exhibited similar differentiation capacity, proliferation, and senescence-associated β-galactosidase activity. Scratch wound migration was not significantly different between healthy and CKD MSCs (P = 0.18). Healthy and CKD BM MSC-derived CM induced similar tubule formation (P = 0.21). There was also no difference in paracrine regenerative function of EVs (scratch wound: P = 0.6; tubulogenesis: P = 0.46).ConclusionsOur results indicate that MSCs have an intrinsic capacity to produce proangiogenic paracrine factors, including EVs, which is not affected by donor health status regarding CKD. This suggests that autologous MSC-based therapy is a viable option in CKD.
Project description:Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Project description:Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells are widely studied, and in early stage, clinical studies show promise for repair and regeneration of cardiac tissues. The ability of mesenchymal stem cells to differentiate into mesoderm- and nonmesoderm-derived tissues, their immunomodulatory effects, their availability, and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of mesenchymal stem cells, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting.
Project description:Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.
Project description:Chronic kidney disease (CKD) has been a growing public medical concern in recent years which calls for effective interventions. Mesenchymal stem cells (MSCs) have garnered increased interest in past decades due to their potential to repair and regenerate damaged tissues. Many clinical trials have highlighted the safety and effectiveness of kidney disease with this novel cell therapy. MSC infusion can improve renal function indices such as glomerular filtration rate, urine protein, serum creatinine, and blood urea nitrogen, while inhibiting immune response by increasing regulatory T cells. The therapeutic mechanisms may be primarily attributed to a function combined with immunomodulation, anti-inflammation, anti-fibrosis, promoting angiogenesis, anti-oxidation, anti-apoptosis, or tissue healing produced by cell secretsome. However, CKD is a broad concept due to many pathological etiologies including diabetes, hypertension, heart disease, immunological damage, a family history of renal failure, and so on. Furthermore, the therapeutic efficacy of MSCs may be influenced by different cell sources, injection methods, medication dosage, or homing proportion. As a result, it is timely and essential to access recent advancements in the MSC application on CKD.