Project description:BackgroundWith an influenza pandemic seemingly imminent, we constructed a model simulating the spread of influenza within the community, in order to test the impact of various interventions.MethodsThe model includes an individual level, in which the risk of influenza virus infection and the dynamics of viral shedding are simulated according to age, treatment, and vaccination status; and a community level, in which meetings between individuals are simulated on randomly generated graphs. We used data on real pandemics to calibrate some parameters of the model. The reference scenario assumes no vaccination, no use of antiviral drugs, and no preexisting herd immunity. We explored the impact of interventions such as vaccination, treatment/prophylaxis with neuraminidase inhibitors, quarantine, and closure of schools or workplaces.ResultsIn the reference scenario, 57% of realizations lead to an explosive outbreak, lasting a mean of 82 days (standard deviation (SD) 12 days) and affecting 46.8% of the population on average. Interventions aimed at reducing the number of meetings, combined with measures reducing individual transmissibility, would be partly effective: coverage of 70% of affected households, with treatment of the index patient, prophylaxis of household contacts, and confinement to home of all household members, would reduce the probability of an outbreak by 52%, and the remaining outbreaks would be limited to 17% of the population (range 0.8%-25%). Reactive vaccination of 70% of the susceptible population would significantly reduce the frequency, size, and mean duration of outbreaks, but the benefit would depend markedly on the interval between identification of the first case and the beginning of mass vaccination. The epidemic would affect 4% of the population if vaccination started immediately, 17% if there was a 14-day delay, and 36% if there was a 28-day delay. Closing schools when the number of infections in the community exceeded 50 would be very effective, limiting the size of outbreaks to 10% of the population (range 0.9%-22%).ConclusionThis flexible tool can help to determine the interventions most likely to contain an influenza pandemic. These results support the stockpiling of antiviral drugs and accelerated vaccine development.
Project description:BackgroundWater pipe smoking (WPS) is re-gaining widespread use and popularity among various groups of people, especially adolescents. Despite different adverse health effects of WPS, many of the WPS interventions have failed to control this type of tobacco smoking. This study was conducted to identify experienced management interventions in preventing and controlling WPS worldwide.MethodsA systematic literature review was conducted. Electronic databases were searched for recordes which were published from beginning 1990 to August 2018. Studies aiming at evaluating, at least, one intervention in preventing and controlling WPS were included in this review, followed by performing the quality assessment and data extraction of eligible studies by two independent investigators. Finally, interventions that were identified from the content analysis process were discussed and classified into relevant categories.ResultsAfter deleting duplications, 2228 out of 4343 retrieved records remained and 38 studies were selected as the main corpus of the present study. Then, the identified 27 interventions were grouped into four main categories including preventive (5, 18.51%) and control (8, 29.62%) interventions, as well as the enactment and implementation of legislations and policies for controlling WPS at national (7, 25.92%) and international (7, 25.92%) levels.ConclusionThe current enforced legislations for preventing and controlling WPS are not supported by rigorous evidence. Informed school-based interventions, especially among adolescents can lead to promising results in preventing and controlling WPS and decreasing the effects of this important social and health crisis in the global arena.
Project description:BackgroundA range of strict nonpharmaceutical interventions (NPIs) were implemented in many countries to combat the coronavirus 2019 (COVID-19) pandemic. These NPIs may also be effective at controlling seasonal influenza virus infections, as influenza viruses have the same transmission path as severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate the effects of different NPIs on the control of seasonal influenza.MethodsData for 14 NPIs implemented in 33 countries and the corresponding influenza virological surveillance data were collected. The influenza suppression index was calculated as the difference between the influenza positivity rate during its period of decline from 2019 to 2020 and during the influenza epidemic seasons in the previous 9 years. A machine learning model was developed using an extreme gradient boosting tree regressor to fit the NPI and influenza suppression index data. The SHapley Additive exPlanations tool was used to characterize the NPIs that suppressed the transmission of influenza.ResultsOf all NPIs tested, gathering limitations had the greatest contribution (37.60%) to suppressing influenza transmission during the 2019-2020 influenza season. The three most effective NPIs were gathering limitations, international travel restrictions, and school closures. For these three NPIs, their intensity threshold required to generate an effect were restrictions on the size of gatherings less than 1000 people, ban of travel to all regions or total border closures, and closing only some categories of schools, respectively. There was a strong positive interaction effect between mask-wearing requirements and gathering limitations, whereas merely implementing a mask-wearing requirement, and not other NPIs, diluted the effectiveness of mask-wearing requirements at suppressing influenza transmission.ConclusionsGathering limitations, ban of travel to all regions or total border closures, and closing some levels of schools were found to be the most effective NPIs at suppressing influenza transmission. It is recommended that the mask-wearing requirement be combined with gathering limitations and other NPIs. Our findings could facilitate the precise control of future influenza epidemics and other potential pandemics.
Project description:BackgroundThis is an update of the original review published in 2008. The risk of adverse cardiovascular outcomes is increased with influenza-like infection, and vaccination against influenza may improve cardiovascular outcomes.ObjectivesTo assess the potential benefits of influenza vaccination for primary and secondary prevention of cardiovascular disease.Search methodsWe searched the following electronic databases on 18 October 2013: The Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Economic Evaluation Database (EED) and Health Technology Assessment database (HTA)), MEDLINE, EMBASE, Science Citation Index Expanded, Conference Proceedings Citation Index - Science and ongoing trials registers (www.controlled-trials.com/ and www.clinicaltrials.gov). We examined reference lists of relevant primary studies and systematic reviews. We performed a limited PubMed search on 20 February 2015, just before publication.Selection criteriaRandomised controlled trials (RCTs) of influenza vaccination compared with placebo or no treatment in participants with or without cardiovascular disease, assessing cardiovascular death or non-fatal cardiovascular events.Data collection and analysisWe used standard methodological procedures as expected by The Cochrane Collaboration. We carried out meta-analyses only for cardiovascular death, as other outcomes were reported too infrequently. We expressed effect sizes as risk ratios (RRs), and we used random-effects models.Main resultsWe included eight trials of influenza vaccination compared with placebo or no vaccination, with 12,029 participants receiving at least one vaccination or control treatment. We included six new studies (n = 11,251), in addition to the two included in the previous version of the review. Four of these trials (n = 10,347) focused on prevention of influenza in the general or elderly population and reported cardiovascular outcomes among their safety analyses; four trials (n = 1682) focused on prevention of cardiovascular events in patients with established coronary heart disease. These populations were analysed separately. Follow-up continued between 42 days and one year. Five RCTs showed deficits in at least three of the risk of bias criteria assessed. When reported (seven studies), vaccination provided adequate immunogenicity or protection against influenza. Cardiovascular mortality was reported by four secondary prevention trials and was significantly reduced by influenza vaccination overall (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.26 to 0.76; P value 0.003) with no significant heterogeneity between studies, and by three trials reporting cardiovascular mortality as part of their safety analyses when the numbers of events were too small to permit conclusions. In studies of patients with coronary heart disease, composite outcomes of cardiovascular events tended to be decreased with influenza vaccination compared with placebo. Generally no significant difference was found between comparison groups regarding individual outcomes such as myocardial infarction.Authors' conclusionsIn patients with cardiovascular disease, influenza vaccination may reduce cardiovascular mortality and combined cardiovascular events. However, studies had some risk of bias, and results were not always consistent, so additional higher-quality evidence is necessary to confirm these findings. Not enough evidence was available to establish whether influenza vaccination has a role to play in the primary prevention of cardiovascular disease.
Project description:BackgroundCardiovascular disease such as coronary artery disease, stroke and congestive heart failure, is a leading cause of death worldwide. A postulated risk factor is elevated circulating total homocysteine (tHcy) levels which is influenced mainly by blood levels of cyanocobalamin (vitamin B12), folic acid (vitamin B9) and pyridoxine (vitamin B6). There is uncertainty regarding the strength of association between tHcy and the risk of cardiovascular disease.ObjectivesTo assess the clinical effectiveness of homocysteine-lowering interventions (HLI) in people with or without pre-existing cardiovascular disease.Search strategyWe searched The Cochrane Central Register of Controlled Trials (CENTRAL) on The Cochrane Library (issue 3 2008), MEDLINE (1950 to August 2008), EMBASE (1988 to August 2008), and LILACS (1982 to September 2, 2008). We also searched in Allied and Complementary Medicine (AMED; 1985 to August 2008), ISI Web of Science (1993 to August 2008), and the Cochrane Stroke Group Specialised Register (April 2007). We hand searched pertinent journals and the reference lists of included papers. We also contacted researchers in the field. There was no language restriction in the search.Selection criteriaWe included randomised clinical trials (RCTs) assessing the effects of HLI for preventing cardiovascular events with a follow-up period of 1 year or longer. We considered myocardial infarction and stroke as the primary outcomes. We excluded studies in patients with end-stage renal disease.Data collection and analysisWe independently performed study selection, risk of bias assessment and data extraction. We estimated relative risks (RR) for dichotomous outcomes. We measured statistical heterogeneity using I(2). We used a random-effects model to synthesise the findings.Main resultsWe included eight RCTs involving 24,210 participants with a low risk of bias in general terms. HLI did not reduce the risk of non-fatal or fatal myocardial infarction, stroke, or death by any cause (pooled RR 1.03, 95% CI 0.94 to 1.13, I(2) = 0%; pooled RR 0.89, 95% CI 0.73 to 1.08, I(2) = 15%); and pooled RR 1.00 (95% CI 0.92 to 1.09, I(2): 0%), respectively.Authors' conclusionsResults from available published trials suggest that there is no evidence to support the use of HLI to prevent cardiovascular events.