Unknown

Dataset Information

0

Nicotinamide adenine dinucleotide as a photocatalyst.


ABSTRACT: Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two π-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour-1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.

SUBMITTER: Kim J 

PROVIDER: S-EPMC6641943 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5258848 | biostudies-literature
| S-EPMC4229845 | biostudies-literature
| S-EPMC6013257 | biostudies-literature
| S-EPMC5737638 | biostudies-literature
| S-EPMC5544671 | biostudies-literature
| S-EPMC8252718 | biostudies-literature
| S-EPMC5657423 | biostudies-literature
| S-EPMC6189366 | biostudies-literature