Project description:Lysine acetylation is an ancient, evolutionarily conserved, reversible post-translational modification. A multitude of diverse cellular functions are regulated by this dynamic modification, including energy and metabolism, protein folding, transcription, and translation. Gene expression can be manipulated through changes in histone acetylation status, and this process is controlled by the function of 2 opposing enzymes: histone acetyl transferases and histone deacetylases (HDACs). The zinc-dependent HDACs are a family of hydrolases that remove acetyl groups from lysines, and their function can be modulated by the action of small molecule ligands. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small molecule chemotypes. Structural biology has aided the development of potent, and in some cases highly isoform-selective, inhibitors that have demonstrated utility in a number of neurological disease models. Continued development and characterization of highly optimized small molecule inhibitors of HDAC enzymes will help refine our understanding of their function and, optimistically, lead to novel therapeutic treatment alternatives for a host of neurological disorders.
Project description:A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Project description:The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH.The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction.
Project description:Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) driven by viruses or bacteria, as well as in numerous immune-mediated disorders. Histone citrullination by the enzyme peptidylarginine deiminase 4 (PAD4) and the consequent decondensation of chromatin are hallmarks in the induction of NETs. Nevertheless, additional histone modifications that may govern NETosis are largely overlooked. Herein, we show that histone deacetylases (HDACs) play critical roles in driving NET formation in human and mouse neutrophils. HDACs belonging to the zinc-dependent lysine deacetylases family are necessary to deacetylate histone H3, thus allowing the activity of PAD4 and NETosis. Of note, HDAC inhibition in mice protects against microbial-induced pneumonia and septic shock, decreasing NETosis and inflammation. Collectively, our findings illustrate a new fundamental step that governs the release of NETs and points to HDAC inhibitors as therapeutic agents that may be used to protect against ARDS and sepsis.
Project description:Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that, as part of mTOR complex 1 (mTORC1), drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. We demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to thoracic aortic constriction (TAC) and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease.
Project description:Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Project description:Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs) remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation, and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs toward Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.
Project description:In this study, we examined the effect of MC1568, a selective class IIa histone deacetylase (HDAC) inhibitor, on the development and progression of renal fibrosis in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO). All 4 class IIa HDAC isoforms, in particular HDAC4, were up-regulated in renal epithelial cells of the injured kidney. Administration of MC1568 immediately after UUO injury reduced expression of α-smooth muscle actin (α-SMA), fibronectin, and collagen 1. MC1568 treatment or small interfering RNA-mediated silencing of HDAC4 also suppressed expression of those proteins in cultured renal epithelial cells. Mechanistically, MC1568 abrogated UUO-induced phosphorylation of Smad3, NF-κB, and up-regulation of integrin ɑVβ6 in the kidney and inhibited TGF-β1-induced responses in cultured renal epithelial cells. MC1568 also increased renal expression of klotho, bone morphogenetic protein 7, and Smad7. Moreover, delayed administration of MC1568 at 3 d after ureteral obstruction reversed the expression of α-SMA, fibronectin, and collagen 1 and increased expression of matrix metalloproteinase (MMP)-2 and -9. Collectively, these results suggest that selectively targeting class IIa HDAC isoforms (in particular HDAC4) may inhibit development and progression of renal fibrosis by suppressing activation and expression of multiple profibrotic molecules and increasing expression of antifibrotic proteins and MMPs.-Xiong, C., Guan, Y., Zhou, X., Liu, L., Zhuang, M. A., Zhang, W., Zhang, Y., Masucci, M. V., Bayliss, G., Zhao, T. C., Zhuang, S. Selective inhibition of class IIa histone deacetylases alleviates renal fibrosis.
Project description:Histone deacetylases (HDACs) are a key component of the epigenetic machinery regulating gene expression, and behave as oncogenes in several cancer types, spurring the development of HDAC inhibitors (HDACi) as anticancer drugs. This review discusses new results regarding the role of HDACs in cancer and the effect of HDACi on tumour cells, focusing on haematological malignancies, particularly acute myeloid leukaemia. Histone deacetylases may have opposite roles at different stages of tumour progression and in different tumour cell sub-populations (cancer stem cells), highlighting the importance of investigating these aspects for further improving the clinical use of HDACi in treating cancer.
Project description:Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.