Project description:MicroRNAs (miRNAs) have been identified as important post-transcriptional regulators involved in various biological and pathological processes of cells, but their underlying mechanisms in chemosensitivity and metastasis have not been fully elucidated. The objective of this study was to identify miR-181b and its mechanism in the chemosensitivity and metastasis of NSCLC. We found that miR-181b expression levels were lower in A549/DDP cells compared with A549 cells. Functional assays showed that the overexpression of miR-181b inhibited proliferation, enhanced chemosensitivity to DDP, attenuated migration and metastatic ability in NSCLC cell lines in vitro and in vivo. TGFβR1 was subsequently identified as a novel functional target of miR-181b. TGFβR1 knockdown revealed similar effects as that of ectopic miR-181b expression, whereas overexpression of TGFβR1 rescued the function of miR-181b-mediated growth, chemosensitivity and metastasis in NSCLC cells. In addition, miR-181b could inactivate the TGFβR1/Smad signaling pathway. We also observed that decreased miR-181b expression and increased TGFβR1 expression were significantly associated with chemosensitivity to DDP and tumor metastasis in NSCLC patients. Consequently, miR-181b functions as a tumor suppressor and has an important role in proliferation, chemosensitivity to DDP and metastasis of NSCLC by targeting TGFβR1/Smad signaling pathway.
Project description:Chemoresistance is a major therapeutic challenge to overcome in NSCLC, in order to improve the current survival rates of<15% at 5 years. We and others have shown increased PI3K signaling in NSCLC to be associated with a more aggressive disease, and a poorer prognosis. In this study, targeted inhibition of three strategic points of the PI3K-NF?B axis was performed with the aim of exploiting vulnerabilities in cisplatin-resistant NSCLC cells. Cisplatin-resistant cell lines were previously generated through prolonged exposure to the drug. Expression of PI3K and NF?B pathway-related genes were compared between cisplatin-resistant cells and their matched parent cells using a gene expression array, qRT-PCR, DNA sequencing, western blot, and immunofluorescence. Targeted inhibition was performed using GDC-0980, a dual PI3K-mTOR inhibitor currently in Phase II clinical trials in NSCLC, and DHMEQ, an inhibitor of NF?B translocation which has been used extensively both in vitro and in vivo. Effects of the two inhibitors were assessed by BrdU proliferation assay and multiparameter viability assay. NFKBIA was shown to be 12-fold overexpressed in cisplatin-resistant cells, with no mutations present in exons 3, 4, or 5 of the gene. Corresponding overexpression of I?B? was also observed. Treatment with DHMEQ (but not GDC-0980) led to significantly enhanced effects on viability and proliferation in cisplatin-resistant cells compared with parent cells. We conclude that NF?B inhibition represents a more promising strategy than PI3K-mTOR inhibition for treatment in the chemoresistance setting in NSCLC.
Project description:Gastric cancer incidence and mortality are among the highest in China, with majority of the mortality related to peritoneal metastasis of gastric cancer. Treatment is limited to radical resection, which is impeded by incidence of metastasis at time of initial diagnosis, thus making it imperative to identify diagnostic and prognostic biomarkers. Legumain, a lysosomal cysteine endopeptidase of the asparaginyl endopeptidase family, has been shown to be overexpressed in patients with metastatic gastric cancer disease and its expression was positively correlated to both disease progression and outcome. However, the mechanism of legumain expression is currently unknown. Legumain overexpression was found to occur at the level of post transcriptional gene regulation. In situ prediction algorithms identified legumain as a putative target of miR-3978. MiR-3978 was significantly decreased in peritoneal metastatic tissue specimens and in MKN45 cells that mimic peritoneal metastasis features. Reporter assays using LGMN (encoding legumain) 3' untranslated region (UTR) showed that miR-3978 interacted with the wild-type but not miR-3978-seed mutant. Ectopic expression of miR-3978 mimic in the MKN45 cell line significantly decreased proliferation and suppressed in vitro migration and invasion. The miR-3978 mimic inhibited gastric carcinoma and metastatic progression in a mice model by regulating legumain protein expression. Inverse correlation of LGMN mRNA and miR-3978 levels in 20 gastric patients at different stages of metastatic disease confirmed the same. Cumulatively, our results indicate that loss of miR-3978 leads to increased expression of legumain, which indicates that miR-3978might be a biomarker for peritoneal metastasis in patients with gastric cancer.
Project description:ObjectiveTo explore the mechanism of miR-195-5p in the pathogenesis non-small cell lung cancer (NSCLC) and cisplatin resistance.MethodsThe function of miR-195-5p in NSCLC and cisplatin resistance were determined by MTT, scratch assay, transwell assay, and nude mice xenograft experiments. miR-195-5p target gene was identified by dual-luciferase reporter assays and real-time PCR analysis.ResultsmiR-195-5p content was lower in A549/DDP than that in A549 cells, with reduced chemotherapy sensitivity and increased cell invasion and migration ability. The loss-of-function and gain-of-function assays illustrated that miR-195-5p might have increased the chemosensitivity to cisplatin in the A549/DDP cells and decreased cell migration and invasion. FGF2 is a negatively correlated action target of miR-195-5p. miR-195-5p might affect EMT by inhibiting FGF2. Overexpression of FGF2 resulted in enhanced cisplatin resistance in the cells, while miR-195-5p might have reversed this resistance.ConclusionOverall, miR-195-5p might target FGF2 to reduce cisplatin resistance in A549/DDP cells and enhance chemosensitivity.
Project description:BACKGROUND:MicroRNAs (miRNAs) have been identified as important posttranscriptional regulators involved in various biological and pathological processes of cells, but their association with tumor chemoresistance has not been fully understood. METHODS:We detected miR-27a expression in two lung adenocarcinoma cell lines, A549 and A549/CDDP, and then investigated the effects of miR-27a on the metastasis and the chemosensitivity of cancer cells, using both gain- and loss-of-function studies. The correlation between miR-27a level and chemoresistance was further investigated in clinical lung adenocarcinoma specimens. RESULTS:miR-27a was significantly up-regulated in cisplatin-resistant lung adenocarcinoma A549/CDDP cells compared with parental A549 cells. miR-27a regulates epithelial-mesenchymal transition (EMT) and cisplatin resistance in vitro and modulates response of lung adenocarcinoma cells to cisplatin in vivo. Further studies identified Raf Kinase Inhibitory Protein (RKIP) as a direct and functional target of miR-27a. Small interfering RNA-mediated RKIP knockdown revealed similar effects as that of ectopic miR-27a expression, while overexpression of RKIP attenuated the function of miR-27a in lung adenocarcinoma cells. Increased miR-27a expression was also detected in tumor tissues sampled from lung adenocarcinoma patients treated with cisplatin-based chemotherapy and was proved to be correlated with low expression of RKIP, decreased sensitivity to cisplatin, and poor prognosis. CONCLUSION:Our results suggest that up-regulation of miR-27a could suppress RKIP expression and in turn contribute to chemoresistance of lung adenocarcinoma cells to cisplatin.
Project description:Although Cisplatin (DDP) is a widely used first-line chemotherapy medication, DDP resistance is one of the main causes of treatment failure in advanced lung cancer. Therefore, it is urgent to identify DDP sensitizers and investigate the underlying molecular mechanisms. Here we utilized DDP-resistant organoids established from tumor biopsies of patients with relapsed lung cancers. In this study, we identified Solamargine as a potential DDP sensitizer through screening a natural product library. Mechanically, Solamargine induced G0/G1-phase arrest and apoptosis in DDP-resistant lung cancer cell lines. Gene expression analysis and KEGG pathway analysis indicated that the hedgehog pathway was suppressed by Solamargine. Moreover, Gli responsive element (GRE) reporter gene assay and BODIPY-cyclopamine binding assay showed that Solamargine inhibited the hedgehog pathway via direct binding to SMO protein. Interestingly, Solamargine and DDP showed a synergetic effect in inhibiting DDP-resistant lung cancer cell lines. Taken together, our work herein revealed Solamargine as a hedgehog pathway inhibitor and DDP-sensitizer, which might provide a new direction for further treatment of advanced DDP-resistant lung cancer patients.
Project description:Cisplatin derivatives can form various types of DNA lesions (DNA-Pt) and trigger pleiotropic DNA damage responses. Here, we report a strategy to visualize DNA-Pt with high resolution, taking advantage of a novel azide-containing derivative of cisplatin we named APPA, a cellular pre-extraction protocol and the labeling of DNA-Pt by means of click chemistry in cells. Our investigation revealed that pretreating cells with the histone deacetylase (HDAC) inhibitor SAHA led to detectable clusters of DNA-Pt that colocalized with the ubiquitin ligase RAD18 and the replication protein PCNA. Consistent with activation of translesion synthesis (TLS) under these conditions, SAHA and cisplatin cotreatment promoted focal accumulation of the low-fidelity polymerase Polη that also colocalized with PCNA. Remarkably, these cotreatments synergistically triggered mono-ubiquitination of PCNA and apoptosis in a RAD18-dependent manner. Our data provide evidence for a role of chromatin in regulating genome targeting with cisplatin derivatives and associated cellular responses.
Project description:Background:Although cisplatin is an effective chemotherapeutic drug that is commonly used for non-small-cell lung cancer (NSCLC) treatment, the drug resistance usually occurs during the long-term use of it. It is urgent to develop strategies to reduce the resistance of NSCLC cells to cisplatin. Methods:Cisplatin-resistant NSCLC cell lines (PC9/R and A549/R) were acquired through long-term exposure of PC9 and A549 cells to cisplatin. QRT-PCR analysis was performed to compare the expression of miR-140 between routine NSCLC cells and cisplatin-resistant NSCLC cells. CCK-8 assay was used to evaluate the effect of miR-140 on the sensitivity of PC9/R and A549/R to cisplatin. Western blot assay and luciferase reporter assay were used to confirm the regulation of miR-140 on SIRT1. Western blot and flow cytometry analysis were performed to evaluate the effect of miR-140 on the apoptosis pathway induced by cisplatin. Results:PC9/R and A549/R exhibited obviously lower sensitivity compared to their parental PC9 and A549 cells, respectively. Furthermore, PC9/R and A549/R cells expressed significantly lower levels of miR-140 compared to their parental PC9 and A549 cells, respectively. However, transfection with miR-140 mimics significantly resensitized the PC9/R and A549/R to cisplatin-induced cytotoxicity. In the mechanism research, we confirmed that SIRT1 was overexpressed and was targeted by miR-140 in PC9/R and A549/R. Furthermore, overexpression of SIRT1 was responsible for the resistance to cisplatin in PC9/R and A549/R cells. Transfection with miR-140 was able to inhibit the expression of SIRT1 and thus inhibited the SIRT1/ROS/JNK pathway. As a result, the PC9/R and A549/R cells restored the sensitivity to cisplatin-induced apoptosis. Conclusion:MiR-140 resensitizes cisplatin-resistant NSCLC cells to cisplatin treatment through the SIRT1/ROS/JNK pathway.
Project description:Chemoresistance poses a significant impediment to effective treatments for non-small-cell lung cancer (NSCLC). P21-activated kinase 4 (PAK4) has been implicated in NSCLC progression by invasion and migration. However, the involvement of PAK4 in cisplatin resistance is not clear. Here, we presented a comprehensive investigation into the involvement of PAK4 in cisplatin resistance within NSCLC. Our study revealed enhanced PAK4 expression in both cisplatin-resistant NSCLC tumors and cell lines. Notably, PAK4 silencing led to a remarkable enhancement in the chemosensitivity of cisplatin-resistant NSCLC cells. Cisplatin evoked endoplasmic reticulum stress in NSCLC. Furthermore, inhibition of PAK4 demonstrated the potential to sensitize resistant tumor cells through modulating endoplasmic reticulum stress. Mechanistically, we unveiled that the suppression of the MEK1-GRP78 signaling pathway results in the sensitization of NSCLC cells to cisplatin after PAK4 knockdown. Our findings establish PAK4 as a promising therapeutic target for addressing chemoresistance in NSCLC, potentially opening new avenues for enhancing treatment efficacy and patient outcomes.