Project description:One of the lawlike regularities of psychological science is that of developmental progression-an increase in sensorimotor, cognitive, and social functioning from childhood to adulthood. Here, we report a rare violation of this law, a developmental reversal in attention. In Experiment 1, 4- to 5-year-olds ( n = 34) and adults ( n = 35) performed a change-detection task that included externally cued and uncued shapes. Whereas the adults outperformed the children on the cued shapes, the children outperformed the adults on the uncued shapes. In Experiment 2, the same participants completed a visual search task, and their memory for search-relevant and search-irrelevant information was tested. The young children outperformed the adults with respect to search-irrelevant features. This demonstration of a paradoxical property of early attention deepens current understanding of the development of attention. It also has implications for understanding early learning and cognitive development more broadly.
Project description:BackgroundTuberculosis (TB) is a re-emerging problem, especially in the larger cities of Western Europe. Selective neonatal BCG vaccination is recommended for infants at risk of TB in the UK. Neonatal BCG is safe and effective, with an overall protective value of 75%. This study aimed to assess BCG rates among at risk infants in Cardiff and the Vale of Glamorgan, South Wales in the year 2003.MethodsA cohort of infants at risk for TB was identified from demographic data stored on a computerised maternity activity database. A manual search of immunisation records determined overall rates and the rates for infants belonging to various ethnic groups.ResultsOf 5308 infants born in 2003, 514 (9.6%) were at risk of TB; 423 (82.2%) of these infants were referred postnatally for BCG vaccination and 391 received it. Twenty six of the 41 at risk white British infants missed having a BCG vaccination compared with 47 of 288 Asian infants and seven of 39 black African babies. The rate of BCG vaccination among white British infants was 36.5% compared with 83.6% for Asian infants from the Indian subcontinent (chi(2) = 7.25, p<0.01) and 82% for black African infants (chi(2) = 4.48, p<0.05).ConclusionsThe overall BCG rate among at risk infants in Cardiff was 76% during the study period. The vaccination rate was poor among white British infants compared with other ethnic groups. Enhanced awareness of health professionals to recognise the need for vaccinating certain white children at risk of TB is essential to improve BCG coverage in an increasingly multiethnic population.
Project description:In this article we describe the dataset titled "Response inhibition and selective attention in adults and children with and without ADHD" which is publicly available on OpenNeuro.org. This dataset is comprised of neuroimaging and standardized cognitive assessment scores from 11 adults, 12 children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and 15 age matched children without ADHD. Functional Magnetic Resonance Imaging (fMRI) data were collected while participants completed selective attention and response inhibition tasks designed and balanced for within or cross-task comparisons. Previous research utilizing this dataset has yet to explore associations between brain function and cognitive assessment scores or differences in neural processes across stimuli features making this dataset valuable for its future contributions to the field as well as replication of prior findings.
Project description:Previous studies have indicated that amblyopia might affect children's attention. We recruited amblyopic children and normal children aged 9-11 years as study subjects and compared selective attention between the two groups of children. Chinese characters denoting colors were used in the Stroop task, and the event-related potential (ERP) was analyzed. The results show that the accuracy of both groups in the congruent condition was higher than the incongruent condition, and the reaction time (RT) of amblyopic children was longer. The latency of the occipital P1 in the incongruent condition was shorter than the neutral condition for both groups; the peak of the occipital P1 elicited by the incongruent stimuli in amblyopic children was higher. In both groups, the N1 peak was higher in the occipital region than frontal and central regions. The N1 latency of normal children was shorter in the congruent and neutral conditions and longer in the incongruent condition; the N1 peak of normal children was higher. The N270 latencies of normal children in the congruent and neutral conditions were shorter; the N270 peak was higher in parietal and occipital regions than frontal and central regions for both groups. The N450 latency of normal children was shorter; in both groups, the N450 average amplitude was significantly higher in the parietal region than central and frontal regions. The accuracy was the same for both groups, but the response of amblyopic children was significantly slower. The two groups showed differences in both stages of the Stroop task. Normal children showed advantages in processing speed on both stimulus and response conflict stages.Brain regions activated during the Stroop task were consistent between groups, in line with their age characteristics.
Project description:BackgroundSelective attention declines with age, due to age-related functional changes in dorsal anterior cingulate cortex (dACC). Real-time functional magnetic resonance imaging (rtfMRI) neurofeedback has been used in young adults to train volitional control of brain activity, including in dACC.MethodsFor the first time, this study used rtfMRI neurofeedback to train 19 young and 27 older adults in volitional up- or down-regulation of bilateral dACC during a selective attention task.ResultsOlder participants in the up-regulation condition (experimental group) showed greater reward points and dACC BOLD signal across training sessions, reflective of neurofeedback training success; and faster reaction time and better response accuracy, suggesting behavioral benefits on selective attention. These effects were not observed for older participants in the down-regulation condition (inverse condition control group), supporting specificity of volitional dACC up-regulation training in older adults. These effects were, unexpectedly, also not observed for young participants in the up-regulation condition (age control group), perhaps due to a lack of motivation to continue the training.ConclusionsThese findings provide promising first evidence of functional plasticity in dACC in late life via rtfMRI neurofeedback up-regulation training, enhancing selective attention, and demonstrate proof of concept of rtfMRI neurofeedback training in cognitive aging.
Project description:This study aimed to identify the neurophysiologic bases of auditory attention deficits in children with attention-deficit/hyperactivity disorder (ADHD), focusing on the electroencephalography component of auditory spatial selective attention [the N2 anterior contralateral component (N2ac)]. EEG data were collected from 7- to 11-year-old children with ADHD (n = 54) and age-, sex-, and IQ-matched typically developing (TD) children (n = 61), while they performed an auditory spatial selective task. For behavior, the children with ADHD showed a shorter reaction time (RT) but a higher RT coefficient of variability (RTCV) than TD children. For ERPs, the TD group showed a significant "adult-like" N2ac component; however, the N2ac component was absent in children with ADHD. More importantly, the smaller N2ac component could predict longer RT in both groups, as well as higher severity of inattentive symptoms in children with ADHD. Our results indicated that 7- to 11-year-old TD children have developed an "adult-like" ability to balance auditory target selection and distractor suppression; the absence of N2ac in children with ADHD provided novel evidence supporting their dysfunctional auditory spatial selective attention.
Project description:ImportanceEnhanced selective attention toward nonsocial objects and impaired attention to social stimuli constitute key clinical features of autism spectrum disorder (ASD). Yet, the mechanisms associated with atypical selective attention in ASD are poorly understood, which limits the development of more effective interventions. In typically developing individuals, selective attention to social and nonsocial stimuli is associated with the informational value of the stimuli, which is typically learned over the course of repeated interactions with the stimuli.ObjectiveTo examine value learning (VL) of social and nonsocial stimuli and its association with selective attention in preschoolers with and without ASD.Design, setting, and participantsThis case-control study compared children with ASD vs children with developmental delay (DD) and children with typical development (TD) recruited between March 3, 2017, and June 13, 2018, at a university-based research laboratory. Participants were preschoolers with ASD, DD, or TD.Main outcomes and measuresProcedure consisted of an eye-tracking gaze-contingent VL task involving social (faces) and nonsocial (fractals) stimuli and consisting of baseline, training, and choice test phases. Outcome measures were preferential attention to stimuli reinforced (high value) vs not reinforced (low value) during training. The hypotheses were stated before data collection.ResultsIncluded were 115 preschoolers with ASD (n = 48; mean [SD] age, 38.30 [15.55] months; 37 [77%] boys), DD (n = 31; mean [SD] age, 45.73 [19.49] months; 19 [61%] boys), or TD (n = 36; mean [SD] age, 36.53 [12.39] months; 22 [61%] boys). The groups did not differ in sex distribution; participants with ASD or TD had similar chronological age; and participants with ASD or DD had similar verbal IQ and nonverbal IQ. After training, the ASD group showed preference for the high-value nonsocial stimuli (mean proportion, 0.61 [95% CI, 0.56-0.65]; P < .001) but not for the high-value social stimuli (mean proportion, 0.51 [95% CI, 0.46-0.56]; P = .58). In contrast, the DD and TD groups demonstrated preference for the high-value social stimuli (DD mean proportion, 0.59 [95% CI, 0.54-0.64]; P = .001 and TD mean proportion, 0.57 [95% CI, 0.53-0.61]; P = .002) but not for the high-value nonsocial stimuli (DD mean proportion, 0.52 [95% CI, 0.44-0.59]; P = .64 and TD mean proportion, 0.50 [95% CI, 0.44-0.57]; P = .91). Controlling for age and nonverbal IQ, autism severity was positively correlated with enhanced learning in the nonsocial domain (r = 0.22; P = .03) and with poorer learning in the social domain (r = -0.26; P = .01).Conclusions and relevanceIncreased attention to objects in preschoolers with ASD may be associated with enhanced VL in the nonsocial domain. When paired with poor VL in the social domain, enhanced value-driven attention to objects may play a formative role in the emergence of autism symptoms by altering attentional priorities and thus learning opportunities in affected children.
Project description:Children's hearing deteriorates markedly in the presence of unpredictable noise. To explore why, 187 school-age children (4-11 years) and 15 adults performed a tone-in-noise detection task, in which the masking noise varied randomly between every presentation. Selective attention was evaluated by measuring the degree to which listeners were influenced by (i.e., gave weight to) each spectral region of the stimulus. Psychometric fits were also used to estimate levels of internal noise and bias. Levels of masking were found to decrease with age, becoming adult-like by 9-11 years. This change was explained by improvements in selective attention alone, with older listeners better able to ignore noise similar in frequency to the target. Consistent with this, age-related differences in masking were abolished when the noise was made more distant in frequency to the target. This work offers novel evidence that improvements in selective attention are critical for the normal development of auditory judgments.
Project description:Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school-age children. Attentional orientation is a potential clinical diagnostic marker to aid in the early diagnosis of ADHD. However, the underlying pathophysiological substrates of impaired attentional orienting in childhood ADHD remain unclear. Electroencephalography (EEG) was measured in 135 school-age children (70 with childhood ADHD and 65 matched typically developing children) to directly investigate target localization during spatial selective attention through univariate ERP analysis and information-based multivariate pattern machine learning analysis. Compared with children with typical development, a smaller N2pc was found in the ADHD group through univariate ERP analysis. Children with ADHD showed a lower parieto-occipital multivariate decoding accuracy approximately 240-340 ms after visual search onset, which predicts a slower reaction time and larger standard deviation of reaction time. Furthermore, a significant correlation was found between N2pc and decoding accuracy in typically developing children but not in children with ADHD. These observations reveal that impaired attentional orienting in ADHD may be due to inefficient neural encoding responses. By using a personalized information-based multivariate machine learning approach, we have advanced the understanding of cognitive deficits in neurodevelopmental disorders. Our study provides potential research directions for the early diagnosis and optimization of personalized intervention in children with ADHD.
Project description:Purpose: This study aims to characterize the early innate and adaptive responses induced by SARS-CoV-2 infection in children and adults over time up to 8 weeks post symptoms onset (POS). We report the gene signature of COVID-19 over the course of the disease in both age groups. The kinetic of infection was divided in 5-time intervals according to the calculated days POS: interval 1 (0-5), interval 2 (6-14), interval 3 (15-22), interval 4 (23-35), and interval 5 (36-81). Methods: RNA extraction was performed automatically via the PAXgene Blood miRNA Kit and the QIAcube instrument (Qiagen) following the manufacturer’s protocol. RNA concentration and quality were assessed by using the Qubit instrument (Invitrogen) and the Agilent 2100 Bioanalyzer, respectively. The Stranded Total RNA Ribo-Zero Plus kit from Illumina was used for the library preparation with 100 ng of total RNA as input. Library molarity and quality were assessed with the Qubit and Tapestation using a DNA High sensitivity chip (Agilent Technologies). Libraries were pooled at 2 nM for clustering and sequenced on an Illumina HiSeq 4000 sequencer for a minimum of 30 million single-end 100 reads per sample. Main results: (I) we observed an antiviral-IFN-signature and innate-cell-activation within the first 5 days post symptoms onset (POS), while genes associated with CD4 T-cell responses, plasma cells and immunoglobulin were upregulated in both age groups during the first two weeks POS, indicative of SARS-CoV-2-specific adaptive immune responses; (II) in adults, genes associated with IFN antiviral responses and activated dendritic cells were maintained during the second week of disease, and subsided only after 14 days. By contrast, those transcriptome changes subsided already after 5 days in children.