Unknown

Dataset Information

0

MAP: model-based analysis of proteomic data to detect proteins with significant abundance changes.


ABSTRACT: Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique, the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing methods, MAP does not require technical replicates to model technical and systematic errors, and instead utilizes a novel step-by-step regression analysis to directly assess the significance of observed protein abundance changes. We applied MAP to compare the proteomic profiles of undifferentiated and differentiated mouse embryonic stem cells (mESCs), and found it has superior performance compared with existing tools in detecting proteins differentially expressed during mESC differentiation. A web-based application of MAP is provided for online data processing at http://bioinfo.sibs.ac.cn/shaolab/MAP.

SUBMITTER: Li M 

PROVIDER: S-EPMC6796874 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

MAP: model-based analysis of proteomic data to detect proteins with significant abundance changes.

Li Mushan M   Tu Shiqi S   Li Zijia Z   Tan Fengxiang F   Liu Jian J   Wang Qian Q   Zhang Yuannyu Y   Xu Jian J   Zhang Yijing Y   Zhou Feng F   Shao Zhen Z  

Cell discovery 20190813


Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique, the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing methods, MAP does not require  ...[more]

Similar Datasets

| S-EPMC4373093 | biostudies-literature
| S-EPMC2712339 | biostudies-literature
| S-EPMC9027643 | biostudies-literature
| S-EPMC1874617 | biostudies-literature
2020-11-30 | GSE158375 | GEO
| S-EPMC5733142 | biostudies-literature
| S-EPMC8574949 | biostudies-literature
| S-EPMC4955199 | biostudies-other
| S-EPMC7054022 | biostudies-literature
| S-EPMC8821639 | biostudies-literature