Project description:Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder characterized by an accumulation of glycosaminoglycans (GAGs), including heparan sulfate, in the body. Major manifestations involve the central nerve system (CNS), skeletal deformation, and visceral manifestations. About 30% of MPS II is linked with an attenuated type of disease subtype with visceral involvement. In contrast, 70% of MPS II is associated with a severe type of disease subtype with CNS manifestations that are caused by the human iduronate-2-sulfatase (IDS)-Pro86Leu (P86L) mutation, a common missense mutation in MPS II. In this study, we reported a novel Ids-P88L MPS II mouse model, an analogous mutation to human IDS-P86L. In this mouse model, a significant impairment of IDS enzyme activity in the blood with a short lifespan was observed. Consistently, the IDS enzyme activity of the body, as assessed in the liver, kidney, spleen, lung, and heart, was significantly impaired. Conversely, the level of GAG was elevated in the body. A putative biomarker with unestablished nature termed UA-HNAc(1S) (late retention time), one of two UA-HNAc(1S) species with late retention time on reversed-phase separation,is a recently reported MPS II-specific biomarker derived from heparan sulfate with uncharacterized mechanism. Thus, we asked whether this biomarker might be elevated in our mouse model. We found a significant accumulation of this biomarker in the liver, suggesting that hepatic formation could be predominant. Finally, to examine whether gene therapy could enhance IDS enzyme activity in this model, the efficacy of the nuclease-mediated genome correction system was tested. We found a marginal elevation of IDS enzyme activity in the treated group, raising the possibility that the effect of gene correction could be assessed in this mouse model. In conclusion, we established a novel Ids-P88L MPS II mouse model that consistently recapitulates the previously reported phenotype in several mouse models.
Project description:UNLABELLED: Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is X-linked recessive lysosomal storage disorder resulting from the defective activity of the enzyme iduronate-2-sulfatase (IDS). Hunter disease can vary from mild to severe, depending on the level of enzyme deficiency. We report the IDS mutation and polymorphisms causing the Hunter syndrome in patients from one family in Tunisia PATIENTS AND METHODS: A preliminary diagnosis was made by qualitative detection of urinary glycosaminoglycans of the suspected MPS II probands. The IDS mutation and polymorphisms were determined on these probands and their family members by amplifying and sequencing each of the exons and intron-exon junctions of IDS gene. RESULTS: The studied probands were homoallelic for p.R88P mutation. In addition, three known polymorphisms/sequence variants: IVS3-16 (c.419-16 delT), T214M (c.641C > T), T146T (c.438 C > T), IVS5-87(c.709-87G > A) and one previously unknown: IVS7+38(c.1006+38T > C were identified in the MPS II patients. These are the first Tunisian MPS II patients to be genotyped. CONCLUSION: The identification of these mutation and polymorphisms and their genotype-phenotype correlation should facilitate prenatal diagnosis and counseling for MPS II in Tunisia, where a very high rate of consanguinity exists.
Project description:Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.
Project description:Mucopolysaccharidosis II (MPS II) is an X-linked, recessive, inborn metabolic disorder caused by defects in iduronate-2-sulfatase (IDS). The age at onset, disease severity, and rate of progression vary significantly among patients. This disease is classified into severe or mild forms depending on neurological symptom involvement. The severe form is associated with progressive cognitive decline while the mild form is predominantly associated with somatic features. Newborn screening (NBS) for MPS II has been performed since December 2016, mainly in Kyushu, Japan, where 197,700 newborns were screened using a fluorescence enzyme activity assay of dried blood spots. We diagnosed one newborn with MPS II with lower IDS activity, elevated urinary glycosaminoglycans, and a novel variant of the IDS gene. In the future, NBS for MPS II is expected to be performed in many regions of Japan and will contribute to the detection of more patients with MPS II, which is crucial to the early treatment of the disorder.
Project description:Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a devastating progressive disease caused by mutations in the iduronate 2-sulfatase (IDS) gene. IDS is one of the sulfatase enzymes required for lysosomal degradation of glycosaminoglycans. Mutant proteins linked to diseases are often prone to misfolding. These misfolded proteins accumulate in the endoplasmic reticulum (ER) and are degraded by the ubiquitin-proteasome pathway (ER-associated degradation (ERAD)). The decreased enzyme activities of IDS mutants may be due to accelerated degradation by ERAD. However, intracellular dynamics including degradation of IDS mutants is unexplored. In this report, we examined biochemical and biological characteristics of wild-type (WT) IDS and IDS mutants expressed in HeLa cells. IDS was shown to be glycosylated in the ER and Golgi apparatus and proteolytically cleaved to generate the mature forms in the Golgi apparatus. The mature WT IDS was translocated to the lysosome. In contrast, all IDS mutants we examined were found to accumulate in the ER and could not efficiently translocate to the lysosome. Accumulated IDS mutants in the ER were ubiquitinated by ERAD-related ubiquitin E3 ligase HRD1 followed by degradation via ERAD. Suppressed degradation of 'attenuated' mutant A85T IDS (the late-onset form of MPS II) by inhibiting ERAD components improved translocation to the lysosome and its activities. Our novel findings provide alternative targets to current principal therapies for MPS II. These perspectives provide a potenti al framework to develop fundamental therapeutic strategies and agents.
Project description:Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked, recessive, lysosomal storage disorder caused by deficiency of iduronate-2-sulfatase. Early bone involvement leads to decreased growth velocity and short stature in nearly all patients. Our analysis aimed to investigate the effects of enzyme replacement therapy (ERT) with idursulfase (Elaprase) on growth in young patients with mucopolysaccharidosis type II. Analysis of longitudinal anthropometric data of MPS II patients (group 1, n = 13) who started ERT before 6 years of age (range from 3 months to 6 years, mean 3.6 years, median 4 years) was performed and then compared with retrospective analysis of data for MPS II patients naïve to ERT (group 2, n = 50). Patients in group 1 received intravenous idursulfase at a standard dose of 0.58 mg/kg weekly for 52-288 weeks. The course of average growth curve for group 1 was very similar to growth pattern in group 2. The average value of body height in subsequent years in group 1 was a little greater than in group 2, however, the difference was not statistically significant. In studied patients with MPS II, idursulfase did not appear to alter the growth patterns.
Project description:IntroductionMucopolysaccharidosis type II (MPS type II, Hunter syndrome) is a rare (~ 1/1500.000), X-linked inherited disorder (affects boys) due to deficiency of the lysosomal enzyme iduronate sulfatase (Xq.28). The complex clinical picture includes osteoarthropathy with a tendency to flexion stiffness and disability. In our country, the specific diagnosis and enzyme replacement therapy (ERT), are recently available in the Center for Genetic Pathology Cluj.ObjectivesAssessment of clinical features, radiological and imaging of osteoarthropathy in MPS type II and their evolution under ERT.Material and methodsThe study included 9 male patients with a suggestive clinical picture of MPS type II; the diagnosis was confirmed by enzymatic assay and the patients were treated with ERT. Osteoarthropathy was assessed before treatment: a) clinical tests (joint goniometry, walking test) and b) radiology (X-rays of the hand and wrist, spine and pelvis), bone densitometry in five patients. Clinical tests were repeated after therapy.ResultsChronic osteoarthropathy was present in all patients. Joint mobility was reduced with quasi stationary trend after 12 months of treatment. The walking test was improved after treatment. Radiological assessment revealed: hand bones changes, delayed bone age, vertebral changes, pelvis changes, kipho-scoliosis and aseptic necrosis of the femoral head in 100%, 88%, 88%, 55% and 11% respectively. Bone mineral density was normal in five of the nine patients evaluated.ConclusionsChronic osteoarthropathy with flexion stiffness is an essential component of the clinical picture of MPS type II. ERT allows an improvement/arrest of evolution (depending on disease severity and time of initiating therapy).
Project description:Deposition of heparan sulfate (HS) in the brain of patients with mucopolysaccharidosis II (MPS II) is believed to be the leading cause of neurodegeneration, resulting in several neurological signs and symptoms, including neurocognitive impairment. We recently showed that pabinafusp alfa, a blood-brain-barrier-penetrating fusion protein consisting of iduronate-2-sulfatase and anti-human transferrin receptor antibody, stabilized learning ability by preventing the deposition of HS in the CNS of MPS II mice. We further examined the dose-dependent effect of pabinafusp alfa on neurological function in relation to its HS-reducing efficacy in a mouse model of MPS II. Long-term intravenous treatment with low (0.1 mg/kg), middle (0.5 mg/kg), and high (2.0 mg/kg) doses of the drug dose-dependently decreased HS concentration in the brain and cerebrospinal fluid (CSF). A comparable dose-dependent effect in the prevention of neuronal damage in the CNS, and dose-dependent improvements in neurobehavioral performance tests, such as gait analysis, pole test, Y maze, and Morris water maze, were also observed. Notably, the water maze test performance was inversely correlated with the HS levels in the brain and CSF. This study provides nonclinical evidence substantiating a quantitative dose-dependent relationship between HS reduction in the CNS and neurological improvements in MPS II.
Project description:Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, X-linked disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase, which catalyses a step in the catabolism of glycosaminoglycans resulting in accumulation of heparan and dermatan sulfate in many organs and tissues. This accumulation favors the appearance of neurologic involvement, severe airway obstruction, skeletal deformities, and cardiomyopathy, especially mitral and aortic valve regurgitation. In severe cases, obstructive airway disease and cardiac failure due to valvular dysfunction are the most common causes of death within the second decade of life. However, in mild cases, intelligence remains normal, stature is almost normal and death usually occurs due to cardiac failure in the fourth decade of life. We report the presentation, diagnosis, management, and outcome of 2 siblings with MPS II and the G374sp mutation at the nucleotide c.1246 of the gene encoding for the iduronate-2-sulfatase.
Project description:BackgroundMucopolysaccharidosis type IVA, also known as Morquio A or MPS IV A, is an autosomal recessive disease caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The loss of GALNS activity leads to the impaired breakdown of glycosaminoglycans (GAGs) keratan sulfate and chondroitin-6-sulfate. The accumulation of GAGs results in multiple organ damage. The accurate and early diagnosis of this disorder helps enhance the effectiveness of the treatment. The present study uses a pre-designed protocol for testing GALNS activity in the leukocytes of Iranian patients with MPS IV A and their parents and compares it with healthy controls.MethodsPatients with MPS IVA previously diagnosed through the measurement of enzyme activity or genetic analysis entered the study. Leukocytes were obtained from the heparinized blood of the participants. The GALNS activity was measured by a fluorometric method using 4-methylumbelliferyl-β-D-galactoside-6-sulfate (4MU-G6S) as the substrate and proper buffer solutions and calibrators.ResultsThe GALNS activity (nmol/17 h/mg protein) was reported as 0-7.4 in the MPSIV A patients, as 19.85-93.7 in their parents and as 38.4-164 in the healthy controls. Statistically significant differences were observed between the three groups in terms of enzyme activity. There were no significant differences in enzyme activity by age. The female subjects in both the patient and parents groups showed lower enzyme activity compared to the male subjects.ConclusionThe fluorometric method was validated for the measurement of GALNS activity in leukocyte samples and identifying Iranian patients with MPS IV A.