Project description:Hypersensitivity reactions are the most frequent dose-limiting adverse reactions to Escherichia coli-derived asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. The aim of the present study was to identify associations between sequence-based Human Leukocyte Antigen Class II region alleles and asparaginase hypersensitivity in a Hungarian ALL population. Four-digit typing of HLA-DRB1 and HLA-DQB1 loci was performed in 359 pediatric ALL patients by using next-generation sequencing method. Based on genotypic data of the two loci, haplotype reconstruction was carried out. In order to investigate the possible role of the HLA-DQ complex, the HLA-DQA1 alleles were also inferred. Multivariate logistic regression analysis and a Bayesian network-based approach were applied to identify relevant genetic risk factors of asparaginase hypersensitivity. Patients with HLA-DRB1*07:01 and HLA-DQB1*02:02 alleles had significantly higher risk of developing asparaginase hypersensitivity compared to non-carriers [P=4.56×10-5; OR=2.86 (1.73-4.75) and P=1.85×10-4; OR=2.99 (1.68-5.31); n=359, respectively]. After haplotype reconstruction, the HLA-DRB1*07:01-HLA-DQB1*02:02 haplotype was associated with an increased risk. After inferring the HLA-DQA1 alleles the HLA-DRB1*07:01-HLA-DQA1*02:01-HLA-DQB1*02:02 haplotype was associated with the highest risk of asparaginase hypersensitivity [P=1.22×10-5; OR=5.00 (2.43-10.29); n=257]. Significantly fewer T-cell ALL patients carried the HLA-DQB1*02:02 allele and the associated haplotype than did pre-B-cell ALL patients (6.5%; vs. 19.2%, respectively; P=0.047). In conclusion, we identified a haplotype in the Human Leukocyte Antigen Class II region associated with a higher risk of asparaginase hypersensitivity. Our results confirm that variations in HLA-D region might influence the development of asparaginase hypersensitivity.
Project description:AimsAsparaginase (ASP) hypersensitivity is a well-known challenge in the treatment of lymphoblastic malignancies. In terms of cost considerations, the cheap native Escherichia coli ASP, the most immunogenic form of this medication, is used in the first line in middle-income countries. Previously, the role of the HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype had been established to associate with E. coli ASP hypersensitivity. We investigated a possible cost-effective genetic testing method to identify patients harbouring the risk HLA haplotype in order to pave the way for safer ASP treatment.MethodsIn 241 patients with previously determined HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype and known ASP hypersensitivity status, 4 candidate HLA-tagging single-nucleotide polymorphisms (SNP)s were measured, and the performance of the different sets of these tag SNPs was evaluated.ResultsWe identified a combination of 2 SNPs - rs28383172 and rs7775228 - as a tag for HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype with sensitivity and specificity values >95%. In line with previous findings, we found complete concordance between HLA-DRB1*07:01 and rs28383172. With bioinformatics methods, the results were also confirmed in the 1000 Genomes dataset in different ethnic groups.ConclusionRs28383172 and rs7775228 are suitable for identifying HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 carriers. Compared to the rest of the population, patients with hypersensitivity-prone genotype would benefit more from the administration of less immunogenic PEGylated ASP before the hypersensitivity evolves, incurring minimal extra cost.
Project description:The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D.
Project description:MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.
Project description:ObjectiveSeveral studies on associations between human leukocyte antigen (HLA) allele frequencies and susceptibility to systemic sclerosis (SSc) have been reported. Anti-centromere antibodies (ACA) and anti-topoisomerase I antibodies (ATA) are found in SSc patients. Here, we sought to identify HLA alleles associated with SSc in Japanese, and explored their associations with SSc phenotypes including the presence of autoantibodies.MethodsAssociations of HLA-DRB1, DQB1, and DPB1 were analyzed in 463 Japanese SSc patients and 413 controls.ResultsWe found that DRB1*13:02 (P = 0.0011, Pc = 0.0319, odds ratio [OR] 0.46, 95% confidence interval [CI] 0.29-0.73), DRB1*14:06 (P = 6.60X10-5, Pc = 0.0020, OR 0.05, 95%CI 0.01-0.41), DQB1*03:01 (P = 0.0009, Pc = 0.0150, OR 0.56, 95%CI 0.40-0.79), and DPB1*02:01 (P = 5.16X10-6, Pc = 8.77X10-5, OR 0.52, 95%CI 0.39-0.69) were protectively associated with SSc. In addition, these four alleles seemed to be independently associated with the protection against the susceptibility of SSc. On the other hand, we could not find predisposing alleles for overall SSc. With respect to SSc subsets, a tendency for these four alleles to be protectively associated was observed. However, there was a significant association between DRB1*01:01, DRB1*10:01, DQB1*05:01, and DPB1*04:02 and the susceptibility to SSc with ACA. On the other hand, the presence of DRB1*15:02, DQB1*06:01, DPB1*03:01, and DPB1*09:01 was associated with SSc with ATA.ConclusionThus, the present study has identified protective associations of the four HLA class II alleles with overall Japanese SSc and predisposing associations of HLA class II alleles with Japanese SSc subsets.
Project description:Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia among those older than 65 years. The onset of LOAD is influenced by neuroinflammation. The human leukocyte antigen (HLA) system is involved in regulating inflammatory responses. Numerous HLA alleles and their haplotypes have shown varying associations with LOAD in diverse populations, yet their impact on the Japanese population remains to be elucidated. Here, we conducted a comprehensive investigation into the associations between LOAD and HLA alleles within the Japanese population. Using whole-genome sequencing (WGS) data from 303 LOAD patients and 1717 cognitively normal (CN) controls, we identified four-digit HLA class I alleles (A, B, and C) and class II alleles (DRB1, DQB1, and DPB1). We found a significant association between the HLA-DRB1*09:01-DQB1*03:03 haplotype and LOAD risk in APOE [Formula: see text]4-negative samples (odds ratio = 1.81, 95% confidence interval = 1.38-2.38, P = 2.03[Formula: see text]). These alleles not only showed distinctive frequencies specific to East Asians but demonstrated a high degree of linkage disequilibrium in APOE [Formula: see text]4-negative samples (r2 = 0.88). Because HLA class II molecules interact with T-cell receptors (TCRs), we explored potential disparities in the diversities of TCR α chain (TRA) and β chain (TRB) repertoires between APOE [Formula: see text]4-negative LOAD and CN samples. Lower diversity of TRA repertoires was associated with LOAD in APOE [Formula: see text]4-negative samples, irrespective of the HLA DRB1*09:01-DQB1*03:03 haplotype. Our study enhances the understanding of the etiology of LOAD in the Japanese population and provides new insights into the underlying mechanisms of its pathogenesis.
Project description:Idiopathic achalasia is a relatively infrequent esophageal motor disorder for which major histocompatibility complex (MHC) genes are well-identified risk factors. However, no information about HLA-achalasia susceptibility in Mexicans has previously been reported. We studied a group of 91 patients diagnosed with achalasia and 234 healthy controls with Mexican admixed ancestry. HLA alleles and conserved extended haplotypes were analyzed using high-resolution HLA typing based on Sanger and next-generation sequencing technologies. Admixture estimates were determined using HLA-B and short tandem repeats. Results were analyzed by non-parametric statistical analysis and Bonferroni correction. P-values < 0.05 were considered significant. Patients with achalasia had 56.7% Native American genes, 24.7% European genes, 16.5% African genes and 2.0% Asian genes, which was comparable with the estimates in the controls. Significant increases in the frequencies of alleles DRB1*14:54 and DQB1*05:03 and the extended haplotypes DRB1*14:54-DQB1*05:03 and DRB1*11:01-DQB1*03:01, even after Bonferroni correction (pC<0.05), were found in the achalasia group compared to those in the controls. Concluding, the HLA class II alleles HLA-DRB1*14:54:01 and DQB1*05:03:01 and the extended haplotype are risk factors for achalasia in mixed-ancestry Mexican individuals. These results also suggest that the HLA-DRB1*14:54-DQB1*05:03 haplotype was introduced by admixture with European and/or Asian populations.
Project description:Idiopathic membranous nephropathy (MN) is associated with HLA; however, the HLA allele involved remains unknown. To identify the HLA risk alleles associated with phospholipase A2 receptor (PLA2R)-related MN in the Chinese population, we sequenced the entire MHC region in DNA samples from 99 patients with PLA2R-related MN, 50 patients with PLA2R-unrelated MN, and 100 healthy subjects. Two HLA risk alleles, HLA-DRB1*15:01 and HLA-DRB3*02:02, independently and strongly associated with an increased risk of PLA2R-related MN. After adjusting for HLA-DRB1*15:01 and HLA-DRB3*02:02, no other alleles showed significant association with PLA2R-related MN. A replication study in an independent cohort of 293 participants with PLA2R-related MN and 285 healthy controls validated these findings. In a joint analysis, a multivariate logistic regression model confirmed that HLA-DRB1*15:01 (odds ratio [OR], 24.9; 95% confidence interval [95% CI], 15.3 to 42.6; P=2.3×10-35) and HLA-DRB3*02:02 (OR, 17.7; 95% CI, 11.0 to 30.3; P=8.0×10-29) independently and strongly associated with PLA2R-related MN. As many as 98.7% of patients with PLA2R-related MN, compared with 43.9% of control subjects, carried at least one HLA risk allele. Subjects with either risk allele had higher odds of developing PLA2R-related MN than those without a risk allele (OR, 98.9; 95% CI, 44.4 to 281.7; P=2.5×10-23). These HLA risk alleles also associated with the age at disease onset in patients with PLA2R-related MN. In conclusion, our findings provide clear evidence that the HLA-DRB1*15:01 and HLA-DRB3*02:02 alleles independently and strongly associate with PLA2R-related MN in the Chinese population.
Project description:Treatment of anemia in patients with chronic kidney disease (CKD) with recombinant human erythropoietin (rHuEPO) can be disrupted by a severe complication, anti-rHuEPO-induced pure red cell aplasia (PRCA). Specific HLA genotypes may have played a role in the high incidence of PRCA in Thai patients (1.7/1,000 patient years vs. 0.03/10,000 patient years in Caucasians). We conducted a case-control study in 157 CKD patients with anti-rHuEPO-induced PRCA and 56 controls. The HLA typing was determined by sequencing using a highly accurate multiplex single-molecule, real-time, long-read sequencing platform. Four analytical models were deployed: Model 1 (additive: accounts for the number of alleles), Model 2 (dominant: accounts for only the presence or absence of alleles), Model 3 (adjusted additive with rHuEPO types) and Model 4 (adjusted dominant with rHuEPO types). HLA-B*46:01:01:01 and DRB1*09:01:02:01 were found to be independent risk markers for anti-rHuEPO-induced PRCA in all models [OR (95%CI), p-values for B*46:01:01:01: 4.58 (1.55-13.51), 0.006; 4.63 (1.56-13.75), 0.006; 5.72 (1.67-19.67), 0.006; and 5.81 (1.68-20.09), 0.005; for DRB1*09:01:02:01: 3.99 (1.28-12.49), 0.017, 4.50 (1.32-15.40), 0.016, 3.42 (1.09-10.74), 0.035, and 3.75 (1.08-13.07), 0.038, in Models 1-4, respectively. HLA-B*46:01:01:01 and DRB1*09:01:02:01 are susceptible alleles for anti-rHuEPO-induced PRCA. These findings support the role of HLA genotyping in helping to monitor patients receiving rHuEPO treatment.