Project description:The architectural protein CTCF binds to mammalian insulators genome wide with directionality and recruits cohesin to mediate oriented long-distance chromatin loops. In many cases, CTCF-binding sites (CBSs) are associated with distal enhancers and target promoters. It is generally thought that CTCF binding results in spatial contacts between distal enhancers and target promoters leading to activation of specific promoters. However, how CTCF orchestrates higher-order chromatin organization to regulate gene expression is not fully understood. Here we used CRISPR DNA-fragment editing to investigate the roles of CTCF in chromatin organization of the clustered protocadherin (Pcdh) genes, which is an ideal model system with repertoires of CBSs in variable promoters and super-enhancers. We found that the CBSs at chromatin domain boundary and even single CBSs could determine the orientation of long-distance chromatin looping. In addition, deletion or inversion of large regions containing tandem CBS arrays in mice demonstrated asymmetric influences on chromatin looping between super-enhancers and target promoters. These genetic data have important implications on the assembly mechanisms of higher-order chromatin structures.
Project description:Most of the transcription factors, RNA polymerases and enhancer binding factors are absent from condensed mitotic chromosomes. In contrast, epigenetic marks of active and inactive genes somehow survive mitosis, since the activity status from one cell generation to the next is maintained. For the zinc-finger protein CTCF, a role in interpreting and propagating epigenetic states and in separating expression domains has been documented. To test whether such a domain structure is preserved during mitosis, we examined whether CTCF is bound to mitotic chromatin. Here we show that in contrast to other zinc-finger proteins, CTCF indeed is bound to mitotic chromosomes. Mitotic binding is mediated by a portion of the zinc-finger DNA binding domain and involves sequence specific binding to target sites. Furthermore, the chromatin loop organized by the CTCF-bound, differentially methylated region at the Igf2/H19 locus can be detected in mitosis. In contrast, the enhancer/promoter loop of the same locus is lost in mitosis. This may provide a novel form of epigenetic memory during cell division.
Project description:dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.
Project description:Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.
Project description:Higher order chromatin structures across the genome are maintained in part by the architectural proteins CCCTC binding factor (CTCF) and the cohesin complex, which co-localize at many sites across the genome. Here, we examine the role of these proteins in mediating chromatin structure at the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encompasses nearly 200 kb flanked by CTCF-binding enhancer-blocking insulator elements and is regulated by cell-type-specific intronic enhancers, which loop to the promoter in the active locus. SiRNA-mediated depletion of CTCF or the cohesin component, RAD21, showed that these two factors have distinct roles in regulating the higher order organization of CFTR. CTCF mediates the interactions between CTCF/cohesin binding sites, some of which have enhancer-blocking insulator activity. Cohesin shares this tethering role, but in addition stabilizes interactions between the promoter and cis-acting intronic elements including enhancers, which are also dependent on the forkhead box A1/A2 (FOXA1/A2) transcription factors (TFs). Disruption of the three-dimensional structure of the CFTR gene by depletion of CTCF or RAD21 increases gene expression, which is accompanied by alterations in histone modifications and TF occupancy across the locus, and causes internalization of the gene from the nuclear periphery.
Project description:HOX cluster genes are activated sequentially in their positional order along the chromosome during vertebrate development. This phenomenon, known as temporal colinearity, depends on transcriptional silencing of 5' HOX genes. Chromatin looping was recently identified as a conserved feature of silent HOX clusters, with CCCTC-binding factor (CTCF) binding sites located at the loop bases. However, the potential contribution of CTCF to HOX cluster silencing and the underlying mechanism have not been established. Here, we demonstrate that the HOXA locus is organized by CTCF into chromatin loops and that CTCF depletion causes significantly enhanced activation of HOXA3 to -A7, -A9 to -A11, and -A13 in response to retinoic acid, with the highest effect observed for HOXA9. Our subsequent analyses revealed that CTCF facilitates the stabilization of Polycomb repressive complex 2 (PRC2) and trimethylated lysine 27 of histone H3 (H3K27me3) at the human HOXA locus. Our results reveal that CTCF functions as a controller of HOXA cluster silencing and mediates PRC2-repressive higher-order chromatin structure.
Project description:It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.
Project description:The structure of the higher-order chromatin fiber has not been defined in detail. We have used a novel approach based on sucrose gradient centrifugation to compare the conformation of centromeric satellite DNA-containing higher-order chromatin fibers with bulk chromatin fibers obtained from the same mouse fibroblast cells. Our data show that chromatin fibers derived from the centromeric domain of a chromosome exist in a more condensed structure than bulk chromatin whereas pericentromeric chromatin fibers have an intermediate conformation. From the standpoint of current models, our data are interpreted to suggest that satellite chromatin adopts a regular helical conformation compatible with the canonical 30-nm chromatin fiber whereas bulk chromatin fibers appear less regularly folded and are perhaps intermittently interrupted by deformations. This distinctive conformation of the higher-order chromatin fiber in the centromeric domain of the mammalian chromosome could play a role in the formation of heterochromatin and in the determination of centromere identity.