Project description:Circadian signaling regulates and synchronizes physiological and behavioral processes, such as feeding, metabolism, and sleep cycles. The endogenous molecular machinery that regulates circadian activities is located in the suprachiasmatic nucleus of the hypothalamus. The REV-ERBs are transcription factors that play key roles in the regulation of the circadian clock and metabolism. Using pharmacological methods, we recently demonstrated the involvement of the REV-ERBs in sleep architecture. Another group reported a delayed response to sleep deprivation and altered sleep cycles in REV-ERBα null mice, indicating a role of REV-ERBα in sleep. Given that REV-ERBβ is structurally and functionally similar to REV-ERBα, we investigated the role of REV-ERBβ in sleep and wakefulness by assessing electroencephalographic recordings in REV-ERBβ deficient mice and the mechanism underlying effects of loss of REV-ERBβ on sleep. Our data suggest that REV-ERBβ is involved in the maintenance of wakefulness during the activity period. In addition, REV-ERBβ-deficient mice administered with dual REV-ERB agonist SR9009, failed to show drug-induced wake increase. Finally, the expression of a number of genes known to mediate sleep and wakefulness were altered in REV-ERBβ null mice.
Project description:The nuclear receptors REV-ERBα and -β link circadian rhythms and metabolism. Like other nuclear receptors, REV-ERB activity can be regulated by ligands, including naturally occurring heme. A putative ligand, SR9009, has been reported to elicit a range of beneficial effects in healthy as well as diseased animal models and cell systems. However, the direct involvement of REV-ERBs in these effects of SR9009 has not been thoroughly assessed, as experiments were not performed in the complete absence of both proteins. Here, we report the generation of a mouse model for conditional genetic deletion of REV-ERBα and -β. We show that SR9009 can decrease cell viability, rewire cellular metabolism, and alter gene transcription in hepatocytes and embryonic stem cells lacking both REV-ERBα and -β. Thus, the effects of SR9009 cannot be used solely as surrogate for REV-ERB activity.
Project description:Rationale: The circadian clock coordinates cell proliferation and metabolism and impacts the progression of some diseases, particularly cancer. Pharmacological modulation of the circadian machinery may be an effective therapeutic approach for treating cancer. SR9009 is a specific synthetic agonist of the REV-ERBs, essential circadian clock components. However, the potential efficacy and antitumor mechanism of this drug in small-cell lung cancer (SCLC) remains poorly understood. Methods: Here, we used chemosensitive cells (H69 and H446) and the corresponding chemoresistant cells (H69AR and H446DDP) to assess the efficacy of the REV-ERB agonist SR9009 for the treatment of SCLC in vitro and further validated the antitumor effect in subcutaneous tumor models of SCLC. Then, we determined whether REV-ERBα was correlated with the anti-SCLC effect of SR9009. Chromatin immunoprecipitation (ChIP) sequencing assays were conducted to identify potential DNA sequences directly regulated by REV-ERBα. Autophagy regulation by REV-ERBα and its possible mechanism in SR9009-based SCLC therapy were analyzed. Results: Here, we showed that the REV-ERB agonist SR9009 is specifically lethal to both chemosensitive and chemoresistant SCLC cells. REV-ERBα was involved in the antitumor effect of SR9009 in SCLC. The core autophagy gene Atg5 was identified as a direct downstream target of REV-ERBα and was suppressed by the REV-ERB agonist SR9009 in SCLC. Furthermore, the interaction of REV-ERBα with this autophagy gene impaired autophagy activity, leading to SR9009 cytotoxicity in SCLC cells. Principal conclusions: Our study provided a novel viewpoint indicating that the REV-ERB agonist SR9009 could be a novel and promising therapeutic strategy in first- or second-line SCLC treatment. The anti-SCLC effect of SR9009 is mediated by REV-ERB dependent suppression of autophagy via direct repression of the autophagy gene Atg5.
Project description:The core clock component REV-ERB is essential for heart function. Previous studies show that REV-ERB agonist SR9009 ameliorates heart remodeling in the pressure overload model with transverse aortic constriction (TAC). However, it is unknown whether SR9009 indeed works through cardiac REV-ERB, given that SR9009 might target other proteins and that REV-ERB in non-cardiac tissues might regulate cardiac functions indirectly. To address this question, we generated the REV-ERBα/β cardiac-specific double knockout mice (cDKO). We found that REV-ERB cardiac deficiency leads to profound dilated cardiac myopathy after TAC compared to wild-type (WT) control mice, confirming the critical role of REV-ERB in protecting against pressure overload. Interestingly, the cardioprotective effect of SR9009 against TAC retains in cDKO mice. In addition, SR9009 administered at the time points corresponding to the peak or trough of REV-ERB expression showed similar cardioprotective effects, suggesting the REV-ERB-independent mechanisms in SR9009-mediated post-TAC cardioprotection. These findings highlight that genetic deletion of REV-ERB in cardiomyocytes accelerates adverse cardiac remodeling in response to pressure overload and demonstrated the REV-ERB-independent cardioprotective effect of SR9009 upon pressure overload.
Project description:REV-ERBs are heme-binding nuclear receptors that regulate the circadian rhythm and play important roles in the regulation of proliferation and the neuronal differentiation process in neuronal stem/progenitor cells in the adult brain. However, the effects of REV-ERB activation in the adult brain remain unclear. In this study, SR9009, a synthetic REV-ERB agonist that produces anxiolytic effects in mice, was used to treat undifferentiated and neuronally differentiated cultured rat adult hippocampal neural stem/progenitor cells (AHPs). The expression of Rev-erbβ was upregulated during neurogenesis in cultured rat AHPs, and Rev-erbβ knockdown analysis indicated that REV-ERBβ regulates the proliferation and neurite outgrowth of cultured rat AHPs. The application of a low concentration (0.1 µM) of the REV-ERB agonist SR9009 enhanced neurite outgrowth during neurogenesis in cultured rat AHPs, whereas the addition of a high concentration (2.5 µM) of SR9009 suppressed neurite outgrowth. Further examination of the SR9009 regulatory mechanism showed that the expressions of downstream target genes of REV-ERBβ, including Ccna2 and Sez6, were modulated by SR9009. The results of this study indicated that REV-ERBβ activity in cultured rat AHPs was regulated by SR9009 in a concentration-dependent manner. Furthermore, SR9009 inhibited the growth of cultured rat AHPs through various pathways, which may provide insight into the multifunctional mechanisms of action associated with SR9009. The findings of this study may provide an improved understanding of proliferation and neuronal maturation mechanisms in cultured rat AHPs through SR9009-regulated REV-ERBβ signaling pathways.
Project description:The cell-autonomous circadian clock regulates IgE- and IL-33-mediated mast cell activation, both of which are key events in the development of allergic diseases. Accordingly, clock modifiers could be used to treat allergic diseases, as well as many other circadian-related diseases, such as sleep and metabolic disorders. The nuclear receptors REV-ERB-α and -β (REV-ERBs) are crucial components of the circadian clockwork. Efforts to pharmacologically target REV-ERBs using putatively specific synthetic agonists, particularly SR9009, have yielded beneficial effects on sleep and metabolism. Here, we sought to determine whether REV-ERBs are functional in the circadian clockwork in mast cells and, if so, whether SR9009 affects IgE- and IL-33-mediated mast cell activation. Bone marrow-derived mast cells (BMMCs) obtained from wild-type mice expressed REV-ERBs, and SR9009 or other synthetic REV-ERBs agonists affected the mast cell clockwork. SR9009 inhibited IgE- and IL-33-mediated mast cell activation in wild-type BMMCs in association with inhibition of Gab2/PI3K and NF-κB activation. Unexpectedly, these suppressive effects of SR9009 were observed in BMMCs following mutation of the core circadian gene Clock. These findings suggest that SR9009 inhibits IgE- and IL-33-mediated mast cell activation independently of the functional circadian clock activity. Thus, SR9009 or other synthetic REV-ERB agonists may have potential for anti-allergic agents.
Project description:REV-ERBα (nr1d1, nuclear receptor subfamily 1 group D member 1) is a transcriptional repressor that in mammals regulates nutrient metabolism, and has effects on energy homeostasis, although its role in teleosts is poorly understood. To determine REV-ERBα's involvement in fish energy balance and metabolism, we studied the effects of acute and 7-day administration of its agonist SR9009 on food intake, weight and length gain, locomotor activity, feeding regulators, plasma and hepatic metabolites, and liver enzymatic activity. SR9009 inhibited feeding, lowering body weight and length gain. In addition, the abundance of ghrelin mRNA decreased in the intestine, and abundance of leptin-aI mRNA increased in the liver. Hypocretin, neuropeptide y (npy), and proopiomelanocortin (pomc) mRNA abundance was not modified after acute or subchronic SR9009 administration, while hypothalamic cocaine- and amphetamine-regulated transcript (cartpt-I) was induced in the subchronic treatment, being a possible mediator of the anorectic effects. Moreover, SR9009 decreased plasma glucose, coinciding with increased glycolysis and a decreased gluconeogenesis in the liver. Decreased triglyceride levels and activity of lipogenic enzymes suggest a lipogenesis reduction by SR9009. Energy expenditure by locomotor activity was not significantly affected by SR9009. Overall, this study shows for the first time in fish the effects of REV-ERBα activation via SR9009, promoting a negative energy balance by reducing energetic inputs and regulating lipid and glucose metabolism.
Project description:Chikungunya virus (CHIKV), an alphavirus spread by Aedes spp. mosquitos, causes severe inflammation and joint pain, progressing to a chronic arthralgic state in a subset of patients. Due to recent global epidemics of CHIKV and the potential for related viruses to cause outbreaks, multiple approaches to combat these pathogens are of interest. We report that SR9009, a synthetic agonist of nuclear receptors Rev-erb ?/?, inhibits replication of multiple alphaviruses (CHIKV and O'nyong'nyong virus) mainly by suppressing structural protein synthesis, although viral RNA accumulation is relatively unimpeded. Furthermore, SR9009 reduces the inflammatory response in cultured murine macrophages exposed to alphavirus-infected cells.
Project description:The nuclear receptors (NRs) REV-ERBα and β, encoded by Nr1d1 and Nr1d2, link circadian rhythms and metabolism. REV-ERB lacks the canonical NR activation domain, and thus functions as a transcriptional repressor. Like other NRs, REV-ERBs can be regulated by ligands, including naturally occurring heme, which potentiate their repressive activity. Attempts to pharmacologically target REV-ERBs by the use of putatively specific synthetic agonists, particularly SR90096, have suggested a wide range of beneficial effects in healthy as well as diseased animal models and cell systems. For instance, Sulli et al. recently reported that REV-ERB activation by SR9009 is specifically lethal to cancer (stem) cells but not other cell types. Because REV-ERBs are core components of the molecular clock, the results were interpreted as a link between the body’s circadian timekeeping system and cancer. Moreover, increased energy expenditure after SR9009 administration decreases obesity in mice, and the reported activity of SR9009 as an exercise mimetic in skeletal muscle have resulted in online sales of the compound as a performance-enhancing drug, with advertisements reassuringly highlighting REV-ERBs as the molecular target (https://www.evolutionary.org/stenabolic-sr9009-review; https://www.simplyanabolics.com/sarms/sr9009-stenabolic/).
Project description:Z-ligustilide (LIG), an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardio-vascular diseases and ischemic brain injury. Recently, LIG has been connected to Glioblastoma multiforme (GBM) because of its structural similarity to 3-n-alkyphthalide (NBP), which is specifically cytotoxic to GBM cells. Hence, we investigated LIG's effect on GBM T98G cells. The study shows that LIG can significantly reduce T98G cells' migration in a dose-dependent manner. Furthermore, the attenuation of cellular mobility can be linked to the activity of the Rho GTPases (RhoA, Rac1 and Cdc42), the three critical molecular switches governing cytoskeleton remodeling; thus, regulating cell migration. LIG significantly reduces the expression of RhoA and affects in a milder manner the expression of Cdc42 and Rac1.