Ontology highlight
ABSTRACT:
SUBMITTER: Salcedo A
PROVIDER: S-EPMC6956735 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
Salcedo Adriana A Tarabichi Maxime M Espiritu Shadrielle Melijah G SMG Deshwar Amit G AG David Matei M Wilson Nathan M NM Dentro Stefan S Wintersinger Jeff A JA Liu Lydia Y LY Ko Minjeong M Sivanandan Srinivasan S Zhang Hongjiu H Zhu Kaiyi K Ou Yang Tai-Hsien TH Chilton John M JM Buchanan Alex A Lalansingh Christopher M CM P'ng Christine C Anghel Catalina V CV Umar Imaad I Lo Bryan B Zou William W Simpson Jared T JT Stuart Joshua M JM Anastassiou Dimitris D Guan Yuanfang Y Ewing Adam D AD Ellrott Kyle K Wedge David C DC Morris Quaid Q Van Loo Peter P Boutros Paul C PC
Nature biotechnology 20200109 1
Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor ...[more]