Project description:Cronkhite-Canada syndrome (CCS) is a very rare disorder with less than 500 reported cases. It is characterized by extensive gastrointestinal polyposis and ectodermal anomalies including alopecia, cutaneous hyperpigmentation, and onychodystrophy. Only 3 cases of associated kidney disease (membranous nephropathy [MN]) have been reported. A 71-year-old male with CCS was referred for further evaluation of proteinuria. The patient initially presented with abdominal discomfort, weight loss, dysgeusia, skin hyperpigmentation, alopecia, and dystrophic nails. Endoscopic evaluation showed widespread gastrointestinal nodular inflammation and polyps. Histopathology was consistent with CCS. Initial treatment was with prednisone, azathioprine, and ranitidine. He had moderate clinical improvement but developed nephrotic-range proteinuria. Renal biopsy showed MN, and cyclosporine was started. The patient had significant improvement in his CCS manifestations; however, his proteinuria and renal function worsened. Rituximab was added to his regimen of cyclosporine and azathioprine, which resulted in remission of his MN, marked improvement in his polyposis, and near resolution of his cutaneous symptoms. This case represents a unique presentation of CCS associated with MN treated with rituximab. The excellent clinical response observed for both CCS and MN advocates consideration of this treatment, especially for refractory disease.
Project description:The genetic characteristics of rectal neuroendocrine tumors (R-NETs) were poorly understood. Depicting the genetic characteristics may provide a biological basis for prognosis prediction and novel treatment development. Tissues of 18 R-NET patients were analyzed using whole-exome sequencing. The median tumor mutation burden (TMB) and microsatellite instability (MSI) were 1.15 Muts/MB (range, 0.03-23.28) and 0.36 (range, 0.00-10.97), respectively. Genes involved in P53 signaling, PI3K-AKT signaling, DNA damage repair, WNT signaling, etc. were frequently altered. Higher TMB (P = 0.078), higher CNV (P = 0.110), somatic mutation of CCDC168 (P = 0.049), HMCN1 (P = 0.040), MYO10 (P = 0.007), and amplification of ZC3H13 (P < 0.001) were associated with shorter OS. Potentially targetable gene alterations (PTGAs) were seen in 72% of the patients. FGFR1 amplification (22%) was the most common PTGA followed by BARD1 and BRCA2 mutation (each 17%). As for gene variations associated with the efficacy of immune checkpoint blockade (ICB), FAT1 alteration (39%) and PTEN depletion (28%) were commonly observed. In conclusion, frequently altered oncogenic pathways might contribute to the development and progression of R-NETs. Gene alterations significantly associated with prognosis might be potential novel targets. Targeted therapy might be a promising strategy as targetable alterations were prevalent in R-NETs. FAT1 alteration and PTEN depletion might be the main genetic alterations influencing the response to ICB besides overall low TMB and MSI in R-NETs.
Project description:BackgroundCronkhite-Canada syndrome (CCS) is a rare, nonhereditary disease characterized by diffuse gastrointestinal polyposis and ectodermal abnormalities. Although it has been proposed to be a chronic inflammatory condition, direct evidence of its pathogenesis is lacking. This study aims to investigate the pathophysiology of CCS by analyzing transcriptomic changes in the colonic microenvironment.MethodsNext-generation sequencing-based genome-wide transcriptional profiling was performed on colonic hamartomatous polyps from four CCS patients and normal colonic mucosa from four healthy volunteers. Analyses of differential expression and multiple enrichment analyses were conducted from the molecular level to the cellular level. Quantitative real-time PCR (qRT-PCR) was carried out to validate the sequencing accuracy in samples from six CCS patients and six healthy volunteers.ResultsA total of 543 differentially expressed genes were identified, including an abundance of CC- and CXC-chemokines. Innate immune response-related pathways and processes, such as leukocyte chemotaxis, cytokine production, IL-17, TNF, IL-1 and NF-kB signaling pathways, were prominently enhanced in CCS colonic polyps. Upregulation of wound healing, epithelial-mesenchymal transition, Wnt, and PI3K-Akt signaling pathways were also observed. Enrichment analyses at different levels identified extracellular structure disorganization, dysfunction of the gut mucosal barrier, and increased angiogenesis. Validation by qRT-PCR confirmed increased expression of the LCN2, IL1B, CXCL1, and CXCL3 genes in CCS colonic polyps.ConclusionsThis case-control whole transcriptome analysis of active CCS colonic hamartomatous polyps revealed intricate molecular pathways, emphasizing the role of the innate immune response, extracellular matrix disorganization, inflammatory cell infiltration, increased angiogenesis, and potential epithelial to mesenchymal transition. These findings supports CCS as a chronic inflammatory condition and sheds light on potential therapeutic targets, paving the way for more effective and personalized management of CCS in the future.
Project description:BackgroundAtopic dermatitis (AD) is a common skin disorder with elevated prevalence. Cataract induced by AD rarely occurs in adolescent and young adult patients, which is also called atopic cataract. Using whole exome sequencing, we aimed to explore genetic alterations among AD and atopic cataract.ResultWe recruited a 19 year-old Chinese male with AD accompanied with cataracts, his father with AD and his mother without AD or cataract. Through analysis of the exomic sequence of the 3 individuals from the same family, we identified that with respect to AD, there were 162 genes mutated in both this patient and his father but not in his mother. In addition, we found 10 genes mutated in this patient only without in his parents according to cataract.ConclusionThis research suggests that coinheritance of mutations in these genes may correlate with AD, and the pathogenesis of AD complicated with cataracts was related to genetic factors.
Project description:BackgroundThe genomic landscape of breast malignant phyllodes tumors (PTs) is not well defined, especially pregnancy-related malignant PTs. To clarify this topic, whole-exome next-generation sequencing (NGS) was performed on tumor samples and paired normal breast tissues from two pregnancy-related malignant PTs, followed by a functional analysis of the genetic alterations.MethodsDNA from malignant PT samples and matched normal breast tissues of both patients were subjected to molecular profiling. NGS of the whole-exome was performed in a commercial molecular pathology laboratory. Predictive tools were used to estimate genetic variation in somatic and germline genes.ResultsIn total, 29 somatic genomic alterations and 18 germline alterations were found in both patients. In Patient 1, 12 aberrations were identified in the tumor tissue, and 9 alterations were identified in matched normal breast tissue. One pathogenic variant in tumor suppressor genes (TP53) was detected in patient 1. In Patient 2, 18 and 10 variants were found in the tumor and matched normal breast tissue, respectively. In Patient 2, pathogenic alterations were identified in two tumor suppressor genes (PTEN and TP53). PTEN and TP53 may be potential drug targets. The functional predictive tools showed that genes of unknown significance for PTs, including FCHO1 in Patient 1, and LRP12 and PKM in Patient 2, were pathogenic. Several genes, including FCHO1, LRP12 and PKM, were shown for the first time to be altered in malignant PTs. A potentially pathogenic germline variant in PRF1, was detected in Patient 1.ConclusionOur study first demonstrated somatic and germline gene alterations in two malignant PTs during pregnancy and lactation. These two PTs shared major genetic events, including TP53 mutation, which commonly occurs in malignant PTs; additionally, we identified two potential genes for targeted therapy, TP53 and PTEN. One germline mutation in PRF1 was also detected. These results provide clues regarding tumor pathogenesis and precision therapy development.
Project description:Studies of naturally occurring cancers in dogs, which share many genetic and environmental factors with humans, provide valuable information as a comparative model for studying the mechanisms of human cancer pathogenesis. While individual and small-scale studies of canine cancers are underway, more generalized multi-omics studies have not been attempted due to the lack of large-scale and well-controlled genomic data. Here, we produced reliable whole-exome and whole-transcriptome sequencing data of 197 canine mammary cancers and their matched controls, annotated with rich clinical and biological features. Our dataset provides useful reference points for comparative analysis with human cancers and for developing novel diagnostic and therapeutic technologies for cancers in pet dogs.
Project description:BackgroundMalignant pilomatricoma (MP) is a rare cancer of the hair matrix with only a few cases reported in literature. Given the rarity of this cancer and the lack of relevant genetic data, very little is known about the nature of the molecular pathophysiology except the involvement of the Catenin Beta 1 (CTNNB1)/Wnt/β-catenin signaling pathway in some cases.Materials and methodsWe describe the whole-exome genomic profiling of four samples from two patients: 1) an MP from patient I, 2) a coexisting benign pilomatricoma (BP) from patient I, 3) a BP from an age and location-matched control patient II, and 4) normal skin tissue from patient II.ResultsWe detected a pathogenic somatic missense mutation in fibroblast growth factor receptor 4 (FGFR4) (c.1162G>A, p. Gly388Arg) in MP and coexisting BP in patient I, whereas the control BP harbored the classical CTNNB1 mutant.ConclusionThis study, the first comparative analysis of benign and MP through whole-exome analysis, identified a novel oncogenic mutation in FGFR4.
Project description:The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient.Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM).Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility.Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility.Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer.
Project description:A 78 years old Chinese woman with five different cancer types and a family history of malignancy was the subject of this study. Pancreatic adenocarcinoma and gingival squamous cell carcinoma tissues were obtained from the patient and sequenced using Whole Exome Sequencing. Whole exome sequencing identified 20 mutation sites in six candidate genes. Sanger Sequencing was used for further validation. The results verified six mutations in three genes, OBSCN, TTN, and RPGRIP1L, in at least one cancer type. Immunohistochemistry was used to verify protein expression. mRNA expression analysis using The Cancer Genome Atlas database revealed that RPGRIP1L was highly expressed in several cancer types, especially in pancreatic adenocarcinoma, and correlated with patient survival and sensitivity to paclitaxel, probably through the TGF-β signaling pathway. The newly identified somatic mutations in RPGRIP1L might contribute to pathogenesis in the patients. Protein conformation simulation demonstrated that the alterations had caused the binding pocket at position 708 to change from concave to convex, which could restrict contraction and extension, and interfere with the physiological function of the protein. Further studies are required to determine the implication of RPGRIP1L in this family and in multiple primary tumors.
Project description:Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board-approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board-approved criteria for return of information to the research participants.