Effects of ordered mutations on dynamics in signaling networks.
Ontology highlight
ABSTRACT: BACKGROUND:Many previous clinical studies have found that accumulated sequential mutations are statistically related to tumorigenesis. However, they are limited in fully elucidating the significance of the ordered-mutation because they did not focus on the network dynamics. Therefore, there is a pressing need to investigate the dynamics characteristics induced by ordered-mutations. METHODS:To quantify the ordered-mutation-inducing dynamics, we defined the mutation-sensitivity and the order-specificity that represent if the network is sensitive against a double knockout mutation and if mutation-sensitivity is specific to the mutation order, respectively, using a Boolean network model. RESULTS:Through intensive investigations, we found that a signaling network is more sensitive when a double-mutation occurs in the direction order inducing a longer path and a smaller number of paths than in the reverse order. In addition, feedback loops involving a gene pair decreased both the mutation-sensitivity and the order-specificity. Next, we investigated relationships of functionally important genes with ordered-mutation-inducing dynamics. The network is more sensitive to mutations subject to drug-targets, whereas it is less specific to the mutation order. Both the sensitivity and specificity are increased when different-drug-targeted genes are mutated. Further, we found that tumor suppressors can efficiently suppress the amplification of oncogenes when the former are mutated earlier than the latter. CONCLUSION:Taken together, our results help to understand the importance of the order of mutations with respect to the dynamical effects in complex biological systems.
SUBMITTER: Mazaya M
PROVIDER: S-EPMC7032007 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA