Project description:Using available official data we found 248 epidemics curves caused worldwide by the 2019-nCoV in the period December 2019-March 31st 2020. The analysis of this material allowed two main observations: 1) it is possible to describe the main geographical pathway of the diffusion of the virus in different directions. This strongly suggests a unique point of origin of the pandemics in Wuhan, China, from where it spread in many different directions. 2) of the 74 epidemics which were characterized by at least 1000 cases, 65 (90%) were located in the geographic region of the world delimitated by 52-30 degrees latitude North. Viceversa 110 (60%) of the 176 epidemics with less than 1000 cases were located outside the cited geographical world region. These results suggest considerations on the pandemic characteristics of 2019-nCoV.
Project description:At the end of December 2019, a novel coronavirus, 2019-nCoV, caused an outbreak of pneumonia spreading from Wuhan, Hubei province, to the whole country of China, which has posed great threats to public health and attracted enormous attention around the world. To date, there are no clinically approved vaccines or antiviral drugs available for these human coronavirus infections. Intensive research on the novel emerging human infectious coronaviruses is urgently needed to elucidate their route of transmission and pathogenic mechanisms, and to identify potential drug targets, which would promote the development of effective preventive and therapeutic countermeasures. Herein, we describe the epidemic and etiological characteristics of 2019-nCoV, discuss its essential biological features, including tropism and receptor usage, summarize approaches for disease prevention and treatment, and speculate on the transmission route of 2019-nCoV.
Project description:Understanding the spatio-temporal characteristics or patterns of the 2019 novel coronavirus (2019-nCoV) epidemic is critical in effectively preventing and controlling this epidemic. However, no research analyzed the spatial dependency and temporal dynamics of 2019-nCoV. Consequently, this research aims to detect the spatio-temporal patterns of the 2019-nCoV epidemic using spatio-temporal analysis methods at the county level in Hubei province. The Mann-Kendall and Pettitt methods were used to identify the temporal trends and abrupt changes in the time series of daily new confirmed cases, respectively. The local Moran's I index was applied to uncover the spatial patterns of the incidence rate, including spatial clusters and outliers. On the basis of the data from January 26 to February 11, 2020, we found that there were 11 areas with different types of temporal patterns of daily new confirmed cases. The pattern characterized by an increasing trend and abrupt change is mainly attributed to the improvement in the ability to diagnose the disease. Spatial clusters with high incidence rates during the period were concentrated in Wuhan Metropolitan Area due to the high intensity of spatial interaction of the population. Therefore, enhancing the ability to diagnose the disease and controlling the movement of the population can be confirmed as effective measures to prevent and control the regional outbreak of the epidemic.
Project description:In this work, a novel fractional order Coronavirus (2019-nCov) mathematical model with modified parameters is presented. The new fractional operator can be written as a linear combination of a Riemann-Liouville integral and a Caputo derivative. The suggested system is ruled by eight fractional-order nonlinear differential equations. The optimal control of the suggested model is the main objective of this work. Three control variables are presented in this model to minimize the number of infected population. Necessary control conditions are derived. Two schemes are constructed to simulate the proposed optimal control system. Prove of the schemes- stability are given. In order to validate the theoretical results numerical simulations and comparative studies with Caputo derivative are given.
Project description:OBJECTIVES:Following the public-health emergency of international concern (PHEIC) declared by the World Health Organization (WHO) on 30 January 2020 and the recent outbreak caused by 2019 novel coronavirus (2019-nCoV) [officially renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] in China and 29 other countries, we aimed to summarise the clinical aspects of the novelBetacoronavirus disease (COVID-19) and its possible clinical presentations together with suggested therapeutic algorithms for patients who may require antimicrobial treatment. METHODS:The currently available literature was reviewed for microbiologically confirmed infections by 2019-nCoV or COVID-19 at the time of writing (13 February 2020). A literature search was performed using the PubMed database and Cochrane Library. Search terms included 'novel coronavirus' or '2019-nCoV' or 'COVID-19'. RESULTS:Published cases occurred mostly in males (age range, 8-92 years). Cardiovascular, digestive and endocrine system diseases were commonly reported, except previous chronic pulmonary diseases [e.g. chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis] that were surprisingly underreported. Fever was present in all of the case series available, flanked by cough, dyspnoea, myalgia and fatigue. Multiple bilateral lobular and subsegmental areas of consolidation or bilateral ground-glass opacities were the main reported radiological features of 2019-nCoV infection, at least in the early phases of the disease. CONCLUSION:The new 2019-nCoV epidemic is mainly associated with respiratory disease and few extrapulmonary signs. However, there is a low rate of associated pre-existing respiratory co-morbidities.