Project description:Activation of the A2A receptor, a G protein-coupled receptor (GPCR), by extracellular adenosine, is antiaggregatory in platelets and anti-inflammatory. Multiple copies of an A2A agonist, the nucleoside CGS21680, were coupled covalently to PAMAM dendrimers and characterized spectroscopically. A fluorescent PAMAM-CGS21680 conjugate 5 inhibited aggregation of washed human platelets and was internalized. We envision that our multivalent dendrimer conjugates may improve overall pharmacological profiles compared to the monovalent GPCR ligands.
Project description:A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Project description:We investigated two types of generation 5 polyamidoamine (PAMAM) dendrimers, each conjugated stochastically with a mean number of 5 or 10 methotrexate (MTX) ligands per dendrimer (G5-MTX5, G5-MTX10), for their binding to surface-immobilized folate binding protein (FBP) as a function of receptor density. The binding study was performed under flow by surface plasmon resonance spectroscopy. Two multivalent models were examined to simulate binding of the dendrimer to the receptor surface, showing that at relatively high receptor density, both dendrimer conjugates exhibit high avidity. However, upon reducing the receptor density by a factor of 3 and 13 relative to the high density level, the avidity of the lower-valent G5-MTX5 decreases by up to several orders of magnitude (KD = nM to ?M), whereas the avidity of G5-MTX10 remains largely unaffected regardless of the density variation. Notably, on the 13-fold reduced FBP surface, G5-MTX5 displays binding kinetics similar to that of monovalent methotrexate, which is patently different from the still tight binding of the higher-valent G5-MTX10. Thus, the binding analysis demonstrates that avidity displayed by multivalent MTX conjugates varies in response to the receptor density and can be modulated for achieving tighter, more specific binding to the higher receptor density by modulation of ligand valency. We believe this study provides experimental evidence supportive of the mechanistic hypothesis of multivalent NP uptake to a cancer cell over a healthy cell where the diseased cell expresses the folate receptor at higher density.
Project description:Circulation tumor cells (CTCs) in the bloodstream of early-stage cancer patients carry the important information about valuable biomarkers and biological properties of primary tumor. However, detection and capture of CTCs are challenging owing to their low concentrations. Traditional technologies have the limited detection sensitivity and the low capture efficiency. We, herein, report an effective approach to specifically bind and capture colon cancer HT29 cells by using multiple Sialyl Lewis X antibodies (aSlex)-conjugated PAMAM dendrimers. The conjugation was characterized by using atom force microscope, UV and fluorescence measurements. The capturing and regulating HT29 cells by the aSlex-coated dendrimer conjugate were analyzed by microscopy and flow cytometry. The results indicated that the conjugate showed the enhanced capture of HT29 cells in a concentration-dependent manner and the maximum capture efficiency of 77.88% was obtained within 1 h-exposure. G6-5aSlex-FITC conjugate showed capture efficiency better than FITC-G6-COOH-5aSlex conjugate. G6-5aSlex-FITC conjugate could specifically capture HT29 cells even when the target HT29 cells were diluted with the interfering cells (e.g., RBCs) to a low concentration. The capture resulted in a concentration-dependent restraint of the cell activity. In conclusion, the aSlex-coated dendrimer conjugate displayed the great potential in capturing and restraining colorectal CTCs in blood.
Project description:Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and influenza viruses have spread around the world at an unprecedented rate. Despite multiple vaccines, new variants of SARS-CoV-2 and influenza have caused a remarkable level of pathogenesis. The development of effective antiviral drugs to treat SARS-CoV-2 and influenza remains a high priority. Inhibiting viral cell surface attachment represents an early and efficient means to block virus infection. Sialyl glycoconjugates, on the surface of human cell membranes, play an important role as host cell receptors for influenza A virus and 9-O-acetyl-sialylated glycoconjugates are receptors for MERS, HKU1 and bovine coronaviruses. We designed and synthesized multivalent 6'-sialyllactose-counjugated polyamidoamine dendrimers through click chemistry at room temperature concisely. These dendrimer derivatives have good solubility and stability in aqueous solutions. SPR, a real-time analysis quantitative method for of biomolecular interactions, was used to study the binding affinities of our dendrimer derivatives by utilizing only 200 micrograms of each dendrimer. Three SARS-CoV-2 S-protein receptor binding domain (wild type and two Omicron mutants) bound to multivalent 9-O-acetyl-6'-sialyllactose-counjugated and 6'-sialyllactose-counjugated dendrimers bound to a single H3N2 influenza A virus's HA protein (A/Hong Kong/1/1968), the SPR study results suggest their potential anti-viral activities.
Project description:An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined "onion peel" strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.
Project description:FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Project description:Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Project description:Galectin-3 is considered a cancer biomarker and bioindicator of fibrosis and cardiac remodeling and, therefore, it is desirable to develop convenient methods for its detection. Herein, an approach based on the development of multivalent electrochemical probes with high galectin-3 sensing abilities is reported. The probes consist of multivalent presentations of lactose-ferrocene conjugates scaffolded on poly (amido amine) (PAMAM) dendrimers and gold nanoparticles. Such multivalent lactose-ferrocene conjugates are synthesized by coupling of azidomethyl ferrocene-lactose building blocks on alkyne-functionalized PAMAM, for the case of the glycodendrimers, and to disulfide-functionalized linkers that are then used for the surface modification of citrate-stabilized gold nanoparticles. The binding and sensing abilities toward galectin-3 of both ferrocene-containing lactose dendrimers and gold nanoparticles have been evaluated by means of isothermal titration calorimetry, UV-vis spectroscopy, and differential pulse voltammetry. The highest sensitivity by electrochemical methods to galectin-3 was shown by lactosylferrocenylated gold nanoparticles, which are able to detect the lectin in nanomolar concentrations.
Project description:Galectins are galactoside-binding lectins that are functional dimers or higher-order oligomers. Multivalent binding has been shown to augment the relatively low affinity of the galectins for their galactoside-binding partners, enabling the galectins to play an important role in the global remodeling of cells that occurs during the stress conditions of disease states, including heart disease and cancer. The presence of galectins in the nematode Caenorhabditis elegans and their galactoside-binding properties have been demonstrated, but the role of multivalent interactions for C. elegans galectins is unknown. Here, we describe the synthesis of Galβ1-4Fuc-functionalized poly(amidoamine) dendrimers and their utility in studies using C. elegans during oxidative stress. C. elegans were fed Galβ1-4Fuc-functionalized dendrimers and RNA interference to knock down lectins lec-1 and lec-10 while undergoing oxidative stress. C. elegans that were pretreated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. Worms that were fed fluorescently tagged glycodendrimers and imaged indicated that the dendrimers are primarily present in the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study suggests that multivalently presented Galβ1-4Fuc can protect C. elegans from oxidative stress.