Project description:Ebstein's anomaly was diagnosed in a fetus at 24 weeks of gestation. There was significant cardiomegaly and severe tricuspid regurgitation (TR). There was functional pulmonary atresia with severe pulmonary regurgitation (PR) and this was causing a circular shunt. There was no fetal hydrops.
Project description:Tetralogy of Fallot with pulmonary atresia, a severe form of tetralogy of Fallot, is characterized by the absence of flow from the right ventricle to the pulmonary arteries. This cardiac abnormality is challenging and complex due to its many different anatomic variants. The main source of variability is the pulmonary artery anatomy, ranging from well-formed, confluent pulmonary artery branches to completely absent native pulmonary arteries replaced by major aorto-pulmonary collateral arteries (MAPCAs) that provide all of the pulmonary blood flow. Since the four-chamber view is usually normal on prenatal sonography, the diagnosis may be missed unless additional cardiac views are studied. Fetal Intelligent Navigation Echocardiography (FINE) is a novel method developed recently that allows automatic generation of nine standard fetal echocardiography views in normal hearts by applying "intelligent navigation" technology to spatiotemporal image correlation volume datasets. We report herein for the first time, two different cases of tetralogy of Fallot with pulmonary atresia having variable sources of pulmonary blood flow in which the prenatal diagnosis was made successfully using the FINE method. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) and automatic labeling (both features of FINE) were very helpful in making such diagnosis.
Project description:Ebstein anomaly (EA) is a rare congenital defect characterized by apical displacement of the septal tricuspid leaflets and atrialization of the right ventricle. The etiology of EA is unclear; however, recurrence in families and the association of EA with genetic syndromes and copy number variants (CNVs) suggest a genetic component.We performed a population-based study to search for recurrent and novel CNVs in a previously unreported set of EA cases.We genotyped 60 EA cases identified from all live births (2,891,076) from selected California counties (1991-2010) using the Illumina HumanOmni2.5-8 array. We identified 38 candidate CNVs in 28 (46%) cases and prioritized and validated 11 CNVs based on the genes included.Five CNVs (41%) overlapped or were close to genes involved in early myocardial development, including NODAL, PDLIM5, SIX1, ASF1A and FGF12. We also replicated a previous association of EA with CNVs at 1p34.1 and AKAP12. Finally, we identified four CNVs overlapping or in close proximity to the transcription factors HES3, TRIM71, CUX1 and EIF4EBP2.This study supports the relationship of genetic factors to EA and demonstrates that defects in cardiomyocytes and myocardium differentiation may play a role. Abnormal differentiation of cardiomyocytes and how genetic factors contribute should be examined for their association with EA.