Project description:A key consideration in the Covid-19 pandemic is the dominant modes of transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The objective of this review was to synthesise the evidence for the potential airborne transmission of SARS-CoV-2 via aerosols. Systematic literature searches were conducted in PubMed, Embase, Europe PMC and National Health Service UK evidence up to 27 July 2020. A protocol was published and Cochrane guidance for rapid review methodology was adhered to throughout. Twenty-eight studies were identified. Seven out of eight epidemiological studies suggest aerosol transmission may occur, with enclosed environments and poor ventilation noted as possible contextual factors. Ten of the 16 air sampling studies detected SARS-CoV-2 ribonucleic acid; however, only three of these studies attempted to culture the virus with one being successful in a limited number of samples. Two of four virological studies using artificially generated aerosols indicated that SARS-CoV-2 is viable in aerosols. The results of this review indicate there is inconclusive evidence regarding the viability and infectivity of SARS-CoV-2 in aerosols. Epidemiological studies suggest possible transmission, with contextual factors noted. Viral particles have been detected in air sampling studies with some evidence of clinical infectivity, and virological studies indicate these particles may represent live virus, adding further plausibility. However, there is uncertainty as to the nature and impact of aerosol transmission of SARS-CoV-2, and its relative contribution to the Covid-19 pandemic compared with other modes of transmission.
Project description:BackgroundWhich virological factors mediate overdispersion in the transmissibility of emerging viruses remains a long-standing question in infectious disease epidemiology.MethodsHere, we use systematic review to develop a comprehensive dataset of respiratory viral loads (rVLs) of SARS-CoV-2, SARS-CoV-1 and influenza A(H1N1)pdm09. We then comparatively meta-analyze the data and model individual infectiousness by shedding viable virus via respiratory droplets and aerosols.ResultsThe analyses indicate heterogeneity in rVL as an intrinsic virological factor facilitating greater overdispersion for SARS-CoV-2 in the COVID-19 pandemic than A(H1N1)pdm09 in the 2009 influenza pandemic. For COVID-19, case heterogeneity remains broad throughout the infectious period, including for pediatric and asymptomatic infections. Hence, many COVID-19 cases inherently present minimal transmission risk, whereas highly infectious individuals shed tens to thousands of SARS-CoV-2 virions/min via droplets and aerosols while breathing, talking and singing. Coughing increases the contagiousness, especially in close contact, of symptomatic cases relative to asymptomatic ones. Infectiousness tends to be elevated between 1 and 5 days post-symptom onset.ConclusionsIntrinsic case variation in rVL facilitates overdispersion in the transmissibility of emerging respiratory viruses. Our findings present considerations for disease control in the COVID-19 pandemic as well as future outbreaks of novel viruses.FundingNatural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program, NSERC Senior Industrial Research Chair program and the Toronto COVID-19 Action Fund.
Project description:Considering that safe-distancing and mask-wearing measures are not strictly enforced in dining settings in the context of SARS-CoV-2, the infection risks of patrons in a dining outlet (e.g., a cafe) is assessed in this study. The size-resolved aerosol emission rate (AER) and droplets deposition rate (DDR) on dining plates from speaking were obtained through chamber measurements and droplet deposition visualization via fluorescent imaging technique (FIT), respectively. The AER from speaking was 24698 #/min in the size range of 0.3-5.5 μm, while the DDR was 365 #/min in the size range of 43-2847 μm. Furthermore, an infection risk model was adopted and revised to evaluate the infection risk of 120 diners for a "3-h event" in the cafe. In a four-person dining setting around a rectangular table, a diner seated diagonally across an infected person posed the least infection risk due to the deposited droplets on dining plates. The deposited droplets on a dining plate were dominant in possible viral transmission as compared to the long-range airborne route when a diner shared a table with the infected person. Yet, long-range airborne transmission had the potential to infect other diners in the cafe, even resulting in super-spreading events. A fresh air supply of 12.1-17.0 L/s per person is recommended for the cafe to serve 4-20 diners concurrently to minimize infection risks due to aerosols. Current ventilation standards (e.g., 8-10 L/s per person) for a cafe are not enough to avoid the airborne transmission of SARS-CoV-2.
Project description:Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Project description:Speech droplets generated by asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are increasingly considered to be a likely mode of disease transmission. Highly sensitive laser light scattering observations have revealed that loud speech can emit thousands of oral fluid droplets per second. In a closed, stagnant air environment, they disappear from the window of view with time constants in the range of 8 to 14 min, which corresponds to droplet nuclei of ca. 4 ?m diameter, or 12- to 21-?m droplets prior to dehydration. These observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.
Project description:The practice of social distancing and wearing masks has been popular worldwide in combating the contraction of COVID-19. Undeniably, although such practices help control the COVID-19 pandemic to a greater extent, the complete control of virus-laden droplet and aerosol transmission by such practices is poorly understood. This review paper intends to outline the literature concerning the transmission of virus-laden droplets and aerosols in different environmental settings and demonstrates the behavior of droplets and aerosols resulted from a cough-jet of an infected person in various confined spaces. The case studies that have come out in different countries have, with prima facie evidence, manifested that the airborne transmission plays a profound role in contracting susceptible hosts. The infection propensities in confined spaces (airplane, passenger car, and healthcare center) by the transmission of droplets and aerosols under varying ventilation conditions were discussed. Interestingly, the nosocomial transmission by airborne SARS-CoV-2 virus-laden aerosols in healthcare facilities may be plausible. Hence, clearly defined, science-based administrative, clinical, and physical measures are of paramount importance to eradicate the COVID-19 pandemic from the world.
Project description:Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.