Unknown

Dataset Information

0

Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin.


ABSTRACT: Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients with DM1 resemble the appearance of a multisystem accelerated aging process. However, the molecular mechanisms underlying these phenotypes remain largely unknown. In this study, we characterized the impact of metabolism and mitochondria on fibroblasts and peripheral blood mononuclear cells (PBMCs) derived from patients with DM1 and healthy individuals. Our results revealed a decrease in oxidative phosphorylation system (OXPHOS) activity, oxygen consumption rate (OCR), ATP production, energy metabolism, and mitochondrial dynamics in DM1 fibroblasts, as well as increased accumulation of reactive oxygen species (ROS). PBMCs of DM1 patients also displayed reduced mitochondrial dynamics and energy metabolism. Moreover, treatment with metformin reversed the metabolic and mitochondrial defects as well as additional accelerated aging phenotypes, such as impaired proliferation, in DM1-derived fibroblasts. Our results identify impaired cell metabolism and mitochondrial dysfunction as important drivers of DM1 pathophysiology and, therefore, reveal the efficacy of metformin treatment in a pre-clinical setting.

SUBMITTER: Garcia-Puga M 

PROVIDER: S-EPMC7185118 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin.

García-Puga Mikel M   Saenz-Antoñanzas Ander A   Fernández-Torrón Roberto R   Munain Adolfo Lopez de AL   Matheu Ander A  

Aging 20200408 7


Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients with DM1 resemble the appearance of a multisystem accelerated aging process. However, the molecular mechanisms underlying these phenotypes remain largely unknown. In this study, we characterized the impact of metabolism and mitochondria on fibroblasts and peripheral blood mononuclear cells  ...[more]

Similar Datasets

| S-EPMC8910924 | biostudies-literature
| S-EPMC10799095 | biostudies-literature
2024-01-26 | PXD044286 | Pride
| S-EPMC10657683 | biostudies-literature
| S-EPMC11355930 | biostudies-literature
| S-EPMC10107781 | biostudies-literature
| S-EPMC11340596 | biostudies-literature
| S-EPMC11319366 | biostudies-literature
| S-EPMC9123843 | biostudies-literature
| S-EPMC6420885 | biostudies-literature