Project description:The invasive pest Spodoptera frugiperda first emerged in China in January 2019 and has, to date, migrated to 29 provinces and municipalities in China, causing heavy crop damage in large areas. As a response to this invasive species from the environment, some indigenous natural enemies have been discovered and reported after S. frugiperda invasion. In this paper, parasitic flies were collected and identified from S. frugiperda collected in the Yunnan, Guangxi, and Henan provinces and the Chongqing municipality in China. By using both conventional and molecular approaches, we were able to show that all the parasitic flies of S. frugiperda identified in the four regions were Megaselia. scalaris, and that they attacked the pest larvae and pupae. This is the first report on an indigenous Chinese Megaselia species that has parasitic ability against the invasive pest S. frugiperda, potentially providing new ideas for pest control in China.
Project description:The first fall armyworm (FAW; Spodoptera frugiperda) attack in Yunnan, China, occurred in January 2019. Because FAW lacks diapause ability, its population outbreaks largely depend on environmental conditions experienced during the overwinter months. Thus, there is an urgent need to make short-term predictions regarding the potential overwintering distribution of FAW to prevent outbreaks. In this study, we selected the MaxEnt model with the optimal parameter combination to predict the potential overwintering distribution of FAW in Yunnan. Remote sensing data were used in the prediction to provide real-time surface conditions. The results predict variation in the severity and geographic distribution of suitability. The high potential distribution shows a concentration in southwestern Yunnan that suitability continues to increase from January to March, gradually extending to eastern Yunnan and a small part of the northern areas. The monthly independent contributions of meteorological, vegetation, and soil factors were 30.6%, 16.5%, and 3.4%, respectively, indicating that the suitability of conditions for FAW was not solely dominated by the weather and that ground surface conditions also played a decisive role. These results provide a basis for the precise prevention and control of fall armyworms by guiding management and decision-making and may facilitate meaningful reductions in pesticide application.
Project description:The alien invasive insect pest Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), commonly referred to as fall armyworm (FAW), is causing significant losses to maize production in Africa since its detection in 2016. Despite being the primary insect pest of the main food crop in the country, researchers have concentrated their efforts on methods of control, and there are no published studies on its seasonality which could assist farmers in delivering effective methods of control in periods of heavy infestations. The primary goal of this study was to assess the seasonal dynamics of FAW in maize fields. We conducted a field survey from May to August 2019 (dry season of the 2018/2019 cropping season) and in December 2019 and January 2020 (rainy season of the 2019/2020 cropping season) in 622 maize fields. In each field, 20 plants were selected in a "W" pattern and checked for the presence of FAW egg masses and/or larvae. Plants were also assessed for damage. Preliminary results show increased infestation, damages, and population density of FAW in the dry season. Our results suggest that early planting of maize in the primary cropping season may significantly reduce the infestation and damage by FAW when compared to the dry season.
Project description:Fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is a highly polyphagous invasive plant pest that has expanded its global geographic distribution, including recently into much of Australia. Rapid diagnostic tests are required for identification of FAW to assist subsequent management and control. We developed a new loop-mediated isothermal amplification (LAMP) assay based on the mitochondrial cytochrome c oxidase subunit I (COI) gene for accurate and timely diagnosis of FAW in the field. The specificity of the new assay was tested against a broad panel of twenty non-target noctuids, including eight other Spodoptera species. Only S. frugiperda samples produced amplification within 20 min, with an anneal derivative temperature of 78.3 ± 0.3 °C. A gBlock dsDNA fragment was developed and trialled as a synthetic positive control, with a different anneal derivative of 81 °C. The new FAW LAMP assay was able to detect FAW DNA down to 2.4 pg, similar to an existing laboratory-based real-time PCR assay. We also trialled the new FAW assay with a colorimetric master mix and found it could successfully amplify positive FAW samples in half the time compared to an existing FAW colorimetric LAMP assay. Given the high sensitivity and rapid amplification time, we recommend the use of this newly developed FAW LAMP assay in a portable real-time fluorometer for in-field diagnosis of FAW.
Project description:The pest species Spodoptera frugiperda, which is native to North and South America, has invaded Africa in 2016. The species consists of two strains, the corn-strain and rice-strain, which differ in their sexual communication. When we investigated populations from Benin and Nigeria, consisting of corn-strain and rice-corn-hybrid descendants, we found no strain-specific sexual communication differences. Both genotypes exhibited the same pheromone composition, consisting of around 97% (Z)-9-tetradecenyl acetate (Z9-14:Ac), 2% (Z)-7-dodecenyl acetate (Z7-12:Ac), and 1% (Z)-9-dodecenyl acetate (Z9-12:Ac), they had similar electrophysiological responses, and all mated around three hours into scotophase. However, we found geographic variation between African and American populations. The sex pheromone of African corn-strain and hybrid descendant females was similar to American rice-strain females and showed higher percentages of the male-attracting minor component Z7-12:Ac. In addition, African males exhibited the highest antennal sensitivity towards Z7-12:Ac, while American males showed highest sensitivity towards the major pheromone component Z9-14:Ac. Increasing the production of and response to the critical minor component Z7-12:Ac may reduce communication interference with other African Spodoptera species that share the same major pheromone component. The implications of our results on pheromone-based pest management strategies are discussed.
Project description:The fall armyworm, Spodoptera frugiperda, is one of the most notorious pest insects, causing damage to more than 350 plant species, and is feared worldwide as an invasive pest species since it exhibits high adaptivity against environmental stress. Here, we therefore investigated its transcriptome responses to four different types of stresses, namely cold, heat, no water and no food. We used brain samples as our interest was in the neuroendocrine responses, while previous studies used whole bodies of larvae or moths. In general, the responses were complex and encompassed a vast array of neuropeptides (NPs) and biogenic amines (BAs). The NPs were mainly involved in ion homeostasis regulation (ITP and ITPL) and metabolic pathways (AKH, ILP), and this was accompanied by changes in BA (DA, OA) biosynthesis. Cold and no-water stress changed the NP gene expression with the same patterns of expression but clearly separated from each other, and the most divergent pattern of expression was shown after no-food stress. In conclusion, our data provide a foundation in an important model and pest insect with candidate NPs and BAs and other marker candidate genes in response to environmental stress, and also potential new targets to manage pest insects.
Project description:BackgroundSpodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides.ResultsIn this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied.ConclusionWe conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.
Project description:Starvation is frequently encountered by animals under fluctuating food conditions in nature, and response to it is vital for life span. Many studies have investigated the behavioral and physiological responses to starvation. In particular, starvation is known to induce changes in olfactory behaviors and olfactory sensitivity to food odorants, but the underlying mechanisms are not well understood. Here, we investigated the transcriptional changes induced by starvation in the chemosensory tissues of the caterpillar Spodoptera littoralis, using Illumina RNA sequencing. Gene expression profiling revealed 81 regulated transcripts associated with several biological processes, such as glucose metabolism, immune defense, response to stress, foraging activity, and olfaction. Focusing on the olfactory process, we observed changes in transcripts encoding proteins putatively involved in the peri-receptor events, namely, chemosensory proteins and odorant-degrading enzymes. Such modulation of their expression may drive fluctuations in the dynamics and the sensitivity of the olfactory receptor neuron response. In combination with the enhanced presynaptic activity mediated via the short neuropeptide F expressed during fasting periods, this could explain an enhanced olfactory detection process. Our observations suggest that a coordinated transcriptional response of peripheral chemosensory organs participates in the regulation of olfactory signal reception and olfactory-driven behaviors upon starvation.
Project description:BackgroundA change in the environment may impair development or survival of living organisms leading them to adapt to the change. The resulting adaptation trait may reverse, or become fixed in the population leading to evolution of species. Deciphering the molecular basis of adaptive traits can thus give evolutionary clues. In phytophagous insects, a change in host-plant range can lead to emergence of new species. Among them, Spodoptera frugiperda is a major agricultural lepidopteran pest consisting of two host-plant strains having diverged 3 MA, based on mitochondrial markers. In this paper, we address the role of microRNAs, important gene expression regulators, in response to host-plant change and in adaptive evolution.ResultsUsing small RNA sequencing, we characterized miRNA repertoires of the corn (C) and rice (R) strains of S. frugiperda, expressed during larval development on two different host-plants, corn and rice, in the frame of reciprocal transplant experiments. We provide evidence for 76 and 68 known miRNAs in C and R strains and 139 and 171 novel miRNAs. Based on read counts analysis, 34 of the microRNAs were differentially expressed in the C strain larvae fed on rice as compared to the C strain larvae fed on corn. Twenty one were differentially expressed on rice compared to corn in R strain. Nine were differentially expressed in the R strain compared to C strain when reared on corn. A similar ratio of microRNAs was differentially expressed between strains on rice. We could validate experimentally by QPCR, variation in expression of the most differentially expressed candidates. We used bioinformatics methods to determine the target mRNAs of known microRNAs. Comparison with the mRNA expression profile during similar reciprocal transplant experiment revealed potential mRNA targets of these host-plant regulated miRNAs.ConclusionsIn the current study, we performed the first systematic analysis of miRNAs in Lepidopteran pests feeding on host-plants. We identified a set of the differentially expressed miRNAs that respond to the plant diet, or differ constitutively between the two host plant strains. Among the latter, the ones that are also deregulated in response to host-plant are molecular candidates underlying a complex adaptive trait.
Project description:Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an important pest on maize, and it can cause large yield losses. As S. frugiperda has invaded many developing countries in Africa and Asia in recent years, it could impact food security. Pesticides remain the main method to control S. frugiperda in the field, and this pest has developed resistance to some pesticides. In this study, we used second-generation sequencing technology to detect the gene expression change of S. frugiperda after treatment by LC20 of three pesticides, lufenuron, spinetoram, and tetrachloroamide, which have different modes of actions. The sequence data were first assembled into a 60,236 unigenes database, and then the differential expression unigenes (DEUs) after pesticide treatment were identified. The DEU numbers, Gene Ontology catalog, and Kyoto Encyclopedia of Genes and Genomes pathway catalog were analyzed. Finally, 11 types of unigenes related to detoxification and DEUs after pesticide treatment were listed, and Cytochrome P450, Glutathione S-transferase, and ATP-binding cassette transporter were analyzed. This study provides a foundation for molecular research on S. frugiperda pesticide detoxification.