Unknown

Dataset Information

0

A coarse-graining, ultrametric approach to resolve the phylogeny of prokaryotic strains with frequent homologous recombination.


ABSTRACT: BACKGROUND:A frequent event in the evolution of prokaryotic genomes is homologous recombination, where a foreign DNA stretch replaces a genomic region similar in sequence. Recombination can affect the relative position of two genomes in a phylogenetic reconstruction in two different ways: (i) one genome can recombine with a DNA stretch that is similar to the other genome, thereby reducing their pairwise sequence divergence; (ii) one genome can recombine with a DNA stretch from an outgroup genome, increasing the pairwise divergence. While several recombination-aware phylogenetic algorithms exist, many of these cannot account for both types of recombination; some algorithms can, but do so inefficiently. Moreover, many of them reconstruct the ancestral recombination graph (ARG) to help infer the genome tree, and require that a substantial portion of each genome has not been affected by recombination, a sometimes unrealistic assumption. METHODS:Here, we propose a Coarse-Graining approach for Phylogenetic reconstruction (CGP), which is recombination-aware but forgoes ARG reconstruction. It accounts for the tendency of a higher effective recombination rate between genomes with a lower phylogenetic distance. It is applicable even if all genomic regions have experienced substantial amounts of recombination, and can be used on both nucleotide and amino acid sequences. CGP considers the local density of substitutions along pairwise genome alignments, fitting a model to the empirical distribution of substitution density to infer the pairwise coalescent time. Given all pairwise coalescent times, CGP reconstructs an ultrametric tree representing vertical inheritance. RESULTS:Based on simulations, we show that the proposed approach can reconstruct ultrametric trees with accurate topology, branch lengths, and root positioning. Applied to a set of E. coli strains, the reconstructed trees are most consistent with gene distributions when inferred from amino acid sequences, a data type that cannot be utilized by many alternative approaches. CONCLUSIONS:The CGP algorithm is more accurate than alternative recombination-aware methods for ultrametric phylogenetic reconstructions.

SUBMITTER: Pang TY 

PROVIDER: S-EPMC7204016 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A coarse-graining, ultrametric approach to resolve the phylogeny of prokaryotic strains with frequent homologous recombination.

Pang Tin Yau TY  

BMC evolutionary biology 20200507 1


BACKGROUND:A frequent event in the evolution of prokaryotic genomes is homologous recombination, where a foreign DNA stretch replaces a genomic region similar in sequence. Recombination can affect the relative position of two genomes in a phylogenetic reconstruction in two different ways: (i) one genome can recombine with a DNA stretch that is similar to the other genome, thereby reducing their pairwise sequence divergence; (ii) one genome can recombine with a DNA stretch from an outgroup genome  ...[more]

Similar Datasets

| S-EPMC2672529 | biostudies-literature
| S-EPMC3353097 | biostudies-literature
| S-EPMC3767480 | biostudies-literature
| S-EPMC2891700 | biostudies-literature
| S-EPMC5560709 | biostudies-literature
| S-EPMC2996671 | biostudies-literature
| S-EPMC4171755 | biostudies-literature
| S-EPMC3090642 | biostudies-literature
| S-EPMC2705573 | biostudies-literature