Project description:New data concerning the occurrence of pleasing fungus beetles (Coleoptera: Erotylidae) in Poland are given, with a focus on rare and difficult to identify Central European taxa. Cryptophilus cf. integer (Heer) (Cryptophilinae) is reported from the Polish territory for the first time based on adult and larval specimens collected in the Wielkopolska-Kujawy Lowland. Identification problems concerning species of Cryptophilus introduced to Europe are discussed. Triplax carpathica Reitter (Erotylinae) is recorded from the Białowieża Primeval Forest, which is the first known non-Carpathian finding of this species, located in the close proximity of the Polish-Belarussian UNESCO World Heritage Site "Białowieża Forest". Discussion of Triplax carpathica being conspecific with Siberian Triplax rufiventris Gebler is provided. New Polish localities of several other Erotylidae are reported, and an updated key to Central European species of Triplax is given. The Triplax key is supplemented with dorsal and ventral habitus images of all treated Triplax species. One of the rarest Central European erotyline species Combocerus glaber (Schaller) is recorded from xerothermic grasslands in North-West Poland.
Project description:Microtubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to anti-microtubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug taxol. We further conducted a focused secondary screen to test drug sensitivity for ~1400 gene targets across two distinct human cell lines and to additionally test sensitivity to the Kif11-inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to anti-microtubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
Project description:Tumor cell lines and drug-resistant counterparts. These data support the publication Gyorffy et al, Oncogene 2005 (July), Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. We contrasted the expression profiles of 13 different human tumor cell lines of gastric (EPG85-257), pancreatic (EPP85-181), colon (HT29) and breast (MCF7 and MDA-MB-231) origin and their counterparts resistant to the topoisomerase inhibitors daunorubicin, doxorubicin or mitoxantrone. We interrogated cDNA arrays with 43 000 cDNA clones ( approximately 30 000 unique genes) to study the expression pattern of these cell lines. A cell type comparison design experiment design type compares cells of different type for example different cell lines. Using regression correlation
Project description:A taxonomic review of Gasterophilus is presented, with nine valid species, 51 synonyms and misspellings for the genus and the species, updated diagnoses, worldwide distributions, and a summary of biological information for all species. Identification keys for adults and eggs are elaborated, based on a series of new diagnostic features and supported by high resolution photographs for adults. The genus is shown to have its highest species richness in China and South Africa, with seven species recorded, followed by Mongolia, Senegal, and Ukraine, with six species recorded.
Project description:Tumor cell lines and drug-resistant counterparts. These data support the publication Gyorffy et al, Oncogene 2005 (July), Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. We contrasted the expression profiles of 13 different human tumor cell lines of gastric (EPG85-257), pancreatic (EPP85-181), colon (HT29) and breast (MCF7 and MDA-MB-231) origin and their counterparts resistant to the topoisomerase inhibitors daunorubicin, doxorubicin or mitoxantrone. We interrogated cDNA arrays with 43 000 cDNA clones ( approximately 30 000 unique genes) to study the expression pattern of these cell lines. A cell type comparison design experiment design type compares cells of different type for example different cell lines. Keywords: cell_type_comparison_design
Project description:Illumina RNA-Seq will be performed on four Ewing’s sarcoma cell lines and two control cell lines. RNA was extracted from all the lines using a basic Trizol extraction protocol.
Project description:Sanitization of the cellular nucleotide pools from mutagenic base analogues is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic, and toxic incorporation of purine base analogues [i.e., ITP, dITP, XTP, dXTP, or 6-hydroxylaminopurine (HAP) deoxynucleoside triphosphate] into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele, 94C-->A, encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analogue drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by Western blot is severely diminished in a human fibroblast cell line with the 94C-->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability, and availability.
Project description:Precision oncology trials based on tumor gene sequencing depend on robust knowledge about the phenotypic consequences of the genetic variants identified in patients' tumors. Mutations in AKT1-3 occur in 3-5% of human cancers. Although a single hotspot mutation, E17K, is the most common, well characterized activating mutations account for a minority of Akt variants that have been identified in large tumor sequencing studies to date. In order to determine the potential clinical relevance of both common and rare Akt mutations, we expressed a set of over twenty recurrent Akt mutants in three different cell lines and evaluated activation of Akt pathway signaling and effects on growth. We determined their relative sensitivity to allosteric and ATP-competitive Akt inhibitors in clinical development. Most Akt mutants did not activate pathway signaling compared to wild type Akt and did not affect growth properties. In addition, the most common activating Akt mutations, including Akt1 E17K, L52R, and Q79K conferred neither sensitivity nor resistance to Akt inhibitors. Equivocal evidence was found that Akt1 D323H and Akt2 W80C mutants are relatively resistant to the allosteric Akt inhibitor MK-2206, but not an ATP-competitive inhibitor. Our results suggest that the vast majority of rare Akt variants are passenger mutations with no effect on drug sensitivity. The hypothesis that activating Akt mutations predict for Akt inhibitor sensitivity remains to be tested clinically, but is not yet supported by our preclinical data.