Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:The inflammatory process is a biological response of the organism to remove injurious stimuli and initiate homeostasis. It has been recognized as a key player in the most severe forms of SARS-CoV-2, characterized by significantly increased pro-inflammatory cytokine levels, the so-called "cytokine storm" that appears to play a pivotal role in this disease. Therefore, the aim of this systematic review was to select clinical trials with anti-inflammatory plants and relate the activity of these plants to inflammatory markers of SARS-CoV-2 infection. PRISMA guidelines are followed, and studies of interest are indexed in PubMed and ClinicalTrials.gov databases. As a result, 32 clinical trials encompassing 22 plants were selected. The main anti-inflammatory mechanisms described in the studies are the inhibition of inflammatory cytokines, such as IL-6, TNF-a, IFN-γ, and IL-1; decreased CRP and oxidative marker levels; increased endogenous antioxidant levels; modulation of cardiovascular risk markers. The data found are not directly related to SARS-CoV-2 infection. However, they provide possibilities for new studies as plants have a wide array of phytochemicals, and detecting which ones are responsible for anti-inflammatory effects can provide invaluable contribution to studies aiming to evaluate efficacy in scenarios of SARS-CoV-2 infection.
Project description:The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Project description:Abstract: SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immune-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immune-coagulopathic responses and Long COVID.
Project description:The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.
Project description:Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes in infected Caco2 cells. Specifically, famotidine treatment inhibits histamine-induced expression of Toll-like receptor 3 (TLR3) in SARS-CoV-2 infected cells and can reduce TLR3-dependent signaling processes that culminate in activation of IRF3 and the NF-κB pathway, subsequently controlling antiviral and inflammatory responses. SARS-CoV-2-infected cells treated with famotidine demonstrate reduced expression levels of the inflammatory mediators CCL-2 and IL6, drivers of the cytokine release syndrome that precipitates poor outcome for patients with COVID-19. Given that pharmacokinetic studies indicate that famotidine can reach concentrations in blood that suffice to antagonize histamine H2 receptors expressed in mast cells, neutrophils, and eosinophils, these observations explain how famotidine may contribute to the reduced histamine-induced inflammation and cytokine release, thereby improving the outcome for patients with COVID-19.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.