Project description:For the first time, organophosphate ester (OPE) content was studied in different types of surgical, self-filtering (KN95, FFP2, and FFP3) and reusable face masks used for COVID-19 prevention. OPEs were detected in all mask samples, although in highly variable amounts which ranged from 0.02 to a maximum of 27.7 µg/mask, with the highest mean concentrations obtained for KN95 masks (11.6 µg/mask) and the lowest for surgical masks (0.24 µg/mask). Twelve out of 16 tested analytes were detected, with TEP, TPHP, TNBP, TEHP and TClPP being the most common OPEs as well as present at the highest concentrations. The non-carcinogenic and carcinogenic risks of OPE inhalation were calculated as being always several orders of magnitude lower than threshold levels, indicating that the use of face masks is safe with regard to OPE contamination. However, given the wide range of OPEs observed in different masks, it can be concluded that some masks (e.g. reusable) are less OPE-contaminated than others (e.g. KN95). With regard to environmental pollution, the disposal of billions of face masks is adding to the already substantial levels of microplastics and associated toxic additives worldwide, an impact that is lessened by use of reusable masks, which also have the lowest economic cost per user. However, in situations of relatively high risk of viral inhalation, such as poorly ventilated indoor public spaces, we recommend the use of FFP2 masks.
Project description:Wearing face masks has become the new normal worldwide due to the global spread of the coronavirus disease 2019. The inhalation of microplastics due to the wearing of masks has rarely been reported. The present study used different types of commonly used masks to conduct breathing simulation experiments and investigate microplastic inhalation risk. Microplastic inhalation caused by reusing masks that underwent various treatment processes was also tested. Results implied that wearing masks considerably reduces the inhalation risk of particles (e.g., granular microplastics and unknown particles) even when they are worn continuously for 720 h. Surgical, cotton, fashion, and activated carbon masks wearing pose higher fiber-like microplastic inhalation risk, while all masks generally reduced exposure when used under their supposed time (<4 h). N95 poses less fiber-like microplastic inhalation risk. Reusing masks after they underwent different disinfection pretreatment processes can increase the risk of particle (e.g., granular microplastics) and fiber-like microplastic inhalation. Ultraviolet disinfection exerts a relatively weak effect on fiber-like microplastic inhalation, and thus, it can be recommended as a treatment process for reusing masks if proven effective from microbiological standpoint. Wearing an N95 mask reduces the inhalation risk of spherical-type microplastics by 25.5 times compared with not wearing a mask.
Project description:We use the synthetic control method to analyze the effect of face masks on the spread of COVID-19 in Germany. Our identification approach exploits regional variation in the point in time when wearing of face masks became mandatory in public transport and shops. Depending on the region we consider, we find that face masks reduced the number of newly registered severe acute respiratory syndrome coronavirus 2 infections between 15% and 75% over a period of 20 days after their mandatory introduction. Assessing the credibility of the various estimates, we conclude that face masks reduce the daily growth rate of reported infections by around 47%.
Project description:Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.
Project description:With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.
Project description:BackgroundThe available evidence suggests that women were more likely to wear face masks as a precaution during the COVID-19 pandemic. However, few studies have explicated this gender disparity in wearing face masks. This study investigates associations of demographic factors with wearing face masks in Malaysia during the COVID-19 pandemic, then explicates gender disparity in wearing face masks from the lens of the Protection Motivation Theory.MethodsThe first part of this study employed a structured online survey of 708 Malaysian adult participants. Data collected were quantitatively analyzed by means of descriptive statistics, bivariate correlations, analysis of variance (ANOVA), and multiple linear regression. The second part of this study was conducted among 28 women to better understand gender disparity in protection motivations from the perspectives of women.ResultsGender has the strongest positive association with wearing face masks (p-value < .001), followed by age (p-value = .028). The Protection Motivation Theory adequately explicated the gender disparity in wearing face masks. Additionally, women were motivated to wear face masks beyond protection from the SARS-CoV-2.ConclusionUnderstanding the underlying motivations for wearing face masks informs design of gender-based public health messages to increase compliance with public health regulations and reduce morbidity and mortality for present and future public health crises.
Project description:The COVID-19 pandemic has led people to wear face masks daily in public. Although the effectiveness of face masks against viral transmission has been extensively studied, there have been few reports on potential hygiene issues due to bacteria and fungi attached to the face masks. We aimed to (1) quantify and identify the bacteria and fungi attaching to the masks, and (2) investigate whether the mask-attached microbes could be associated with the types and usage of the masks and individual lifestyles. We surveyed 109 volunteers on their mask usage and lifestyles, and cultured bacteria and fungi from either the face-side or outer-side of their masks. The bacterial colony numbers were greater on the face-side than the outer-side; the fungal colony numbers were fewer on the face-side than the outer-side. A longer mask usage significantly increased the fungal colony numbers but not the bacterial colony numbers. Although most identified microbes were non-pathogenic in humans; Staphylococcus epidermidis, Staphylococcus aureus, and Cladosporium, we found several pathogenic microbes; Bacillus cereus, Staphylococcus saprophyticus, Aspergillus, and Microsporum. We also found no associations of mask-attached microbes with the transportation methods or gargling. We propose that immunocompromised people should avoid repeated use of masks to prevent microbial infection.
Project description:The COVID-19 pandemic forced use of face masks up to billions of masks per day globally. Though an important and necessary measure for control of the pandemic, use of masks also poses some inherent risks. One of those risks is inhalation of microplastics released from the mask materials. Since most of the mask materials are made from plastic/polymers, they always have the potential to expose the user to fragmented microplastics. To estimate the amount of inhalable microplastic exuded from masks, an experiment simulating real-life scenario of mask usage was performed. The study included collection of microplastics oozed out from the masks on to a filter paper followed by staining and fluorescence detection of the total number of microplastics using a microscope. Both used and new masks were studied. Based on the emission wavelength, the microplastics were found to be belonging to three different categories, namely blue, green and red emitting microplastics respectively. The number of microplastic particles emitted per mask over a period of usage of 8 h was about 5000 to 9000 for new masks and about 6500 to 15,000 for used masks respectively. The estimation of polymer type of plastic in the mask fabrics was also carried out using Raman and FTIR spectroscopy.
Project description:The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Project description:Since the beginning of the COVID-19 pandemic, research has explored various aspects of face mask use. While most of the research explores their effectiveness to prevent the spread of the virus, a growing body of literature has found that using face masks also has social meaning. But what social meaning does it have, and how does this meaning express itself in people's practice? Based on 413 qualitative interviews with residents in five European countries (Austria, Belgium, Germany, Ireland, and Switzerland), we found that the meanings of face masks have changed drastically during the first months of the pandemic. While in spring 2020 people wearing them had to fear stigmatization, in autumn of 2020 not wearing masks was more likely to be stigmatized. Throughout the first year of the pandemic, we found that mask wearing had multiple and partly seemingly contradictory meanings for people. They were perceived as obstacles for non-verbal communication, but also a way to affirm friendships and maintain social contacts. They also signaled specific moral or political stances on the side of face mask wearers and non-wearers alike, expressed their belonging to certain communities, or articulated concern. In sum, our findings show how face masks serve as scripts for people to navigate their lives during the COVID-19 pandemic. We conclude that public and political discussions concerning face masks should include not only evidence on the epidemiological and infectiological effects of face masks, but also on their social meanings and their social effects.