Project description:Immune dysregulation and alteration of the bone marrow microenvironment allowing plasma cells to escape immune surveillance are well-known factors associated with the proliferation of clonal plasma cells and development of multiple myeloma (MM). Whilst immunotherapeutic approaches are now commonplace in a wide spectrum of malignancies, this aberration of myeloma development gives rise to the biological rationale for the use of immune checkpoint inhibitors (ICIs) in MM. However, the initial experience with these agents has been challenging with limited single agent efficacy, significant toxicity, and side effects. Herein, we review the biological and immunological aspects of MM and ICIs. We discuss the basic biology of immune checkpoint inhibitors, mechanisms of resistance, and drug failure patterns, review the published clinical trial data for ICIs in MM, and look towards the future of ICIs for MM treatment.
Project description:Multiple myeloma (MM) is related to immune disorders, recent studys have revealed that immunotherapy can greatly benefit MM patients. Immune checkpoints can negatively modulate the immune system and are closely associated with immune escape. Immune checkpoint-related therapy has attracted much attention and research in MM. However, the efficacy of those therapies need further improvements. There need more thoughts about the immune checkpoint to translate their use in clinical work. In our review, we aggregated the currently known immune checkpoints and their corresponding ligands, further more we propose various ways of potential translation applying treatment based on immune checkpoints for MM patients.
Project description:Antineoplastic agents directly targeting tumor cells have represented the major strategy of systemic anticancer therapy for many years. Nevertheless, overcoming resistance mechanisms remains a great challenge because treatment options are limited in many cases. From this point of view, immunotherapeutic approaches seem promising in a broad spectrum of solid tumors. These include in particular the currently available inhibitors directed against immune checkpoints leading to a significant T-cell activation. To date, the programmed death receptor 1 (PD-1) and its ligand are the most prominent targets in this context. However, the role of checkpoint inhibitors in the treatment of breast cancer is still being debated, and the main focus is on triple-negative breast cancer patients as a target population in many ongoing trials. Moreover, the potential superiority of combinations with other anticancer drugs such as cytotoxics and targeted agents will be discussed.
Project description:Immune checkpoint inhibitors (ICIs) have demonstrated marked clinical effects worldwide, and "cancer immunotherapy" has been recognized as a feasible option for cancer treatment. Significant treatment responses have already been attained for malignant melanoma and lung cancer, ahead of gynecologic cancer. In cervical cancer, however, results are only available from phase II trials, not from phase III trials. Cervical cancer is a malignant tumor and is the fourth most common cancer among women worldwide. Since the introduction of angiogenesis inhibitors, treatment for recurrent and advanced cervical cancers has improved in the past five years, but median overall survival is 16.8 months for advanced cervical cancer, and all-stage five-year overall survival rate is 68%, indicating that treatment effects remain inadequate. For this reason, the development of new therapeutic approaches is imperative. We describe herein the KEYNOTE-158 and CheckMate 358 clinical trials, which were conducted for cervical cancer, and discuss future directions, including potential combinations with concurrent chemoradiation therapy (CCRT), as noted for other types of cancer.
Project description:In the biology of multiple myeloma (MM), immune dysregulation has emerged as a critical component for novel therapeutic strategies. This dysfunction is due to a reduced antigen presentation, a reduced effector cell ability and a loss of reactive T cells against myeloma, together with a bone marrow microenvironment that favors immune escape. The Programmed Death-1 (PD-1) pathway is associated with the regulation of T cell activation and with the apoptotic pathways of effector memory T cells. Specifically, the binding with PD-1 ligand (PD-L1) on the surface of tumor plasma cells down-regulates T cell-proliferation, thus contributing to the immune escape of tumor cells. In relapsed and/or refractory MM (RRMM) patients, PD-1/PD-L1 blockade was analyzed by using nivolumab, pembrolizumab, and durvalumab. Outcomes with single agents were unsatisfactory, whereas combination strategies with backbone immunomodulatory drugs (IMiDs) suggested a synergistic action in such a complex immunological landscape, even in patients previously refractory to these drugs. Nevertheless, these combinations were also associated with an increased incidence of adverse events. This review aims to analyze the available preclinical and clinical data on the role of PD-1/PD-L1 inhibitors in MM therapy, focusing on available preliminary efficacy and safety data and offering insights for future investigation.
Project description:Immunotherapy with checkpoint inhibitors has arrived and begun to change the landscape of clinical oncology, including for patients with renal cell carcinoma. Specifically, drugs targeting the programmed death 1 and cytotoxic T-lymphocyte associated antigen pathways have demonstrated remarkable responses for patients in clinical trials. In this article, we review the most recent available data for immune checkpoint inhibitors for patients with renal cell carcinoma. We discuss potential strategies for rational combination therapies in these patients, some of which are currently being studied, and address important future considerations for use of these novel agents in the years to come.
Project description:Virotherapy, a strategy to use live viruses as therapeutics, is a relatively novel field in the treatment of cancer. With the advancements in molecular biology and virology, there has been a huge increase in research on cancer virotherapy. For the treatment of cancer, viruses could be used either as vectors in gene therapy or as oncolytic agents. A variety of viruses have been studied for their potential usage in gene therapy or oncolytic therapy. In this review, we discuss virotherapy with a special focus on breast cancer. Breast cancer is the most common cancer and the leading cause of cancer-related deaths in women worldwide. Current treatments are insufficient to cure metastatic breast cancer and are often associated with severe side effects that further deteriorates patients' quality of life. Therefore, novel therapeutic approaches such as virotherapy need to be developed for the treatment of breast cancer. Here we summarize the current treatments for breast cancer and the potential use of virotherapy in the treatment of the disease. Furthermore, we discuss the use of oncolytic viruses as immunotherapeutics and the rational combination of oncolytic viruses with other therapeutics for optimal treatment of breast cancer. Finally, we outline the progress made in virotherapy for breast cancer and the shortcomings that need to be addressed for this novel therapy to move to the clinic for better treatment of breast cancer.
Project description:Glycogen synthase kinase-3 (GSK-3) was discovered to be a multifunctional enzyme involved in a wide variety of biological processes, including early embryo formation, oncogenesis, as well cell death in neurodegenerative diseases. Several critical cellular processes in the brain are regulated by the GSK-3β, serving as a central switch in the signaling pathways. Dysregulation of GSK-3β kinase has been reported in diabetes, cancer, Alzheimer's disease, schizophrenia, bipolar disorder, inflammation, and Huntington's disease. Thus, GSK-3β is widely regarded as a promising target for therapeutic use. The current review article focuses mainly on Alzheimer's disease, an age-related neurodegenerative brain disorder. GSK-3β activation increases amyloid-beta (Aβ) and the development of neurofibrillary tangles that are involved in the disruption of material transport between axons and dendrites. The drug-binding cavities of GSK-3β are explored, and different existing classes of GSK-3β inhibitors are explained in this review. Non-ATP competitive inhibitors, such as allosteric inhibitors, can reduce the side effects compared to ATP-competitive inhibitors. Whereas ATP-competitive inhibitors produce disarrangement of the cytoskeleton, neurofibrillary tangles formation, and lead to the death of neurons, etc. This could be because they are binding to a site separate from ATP. Owing to their interaction in particular and special binding sites, allosteric ligands interact with substrates more selectively, which will be beneficial in resolving drug-induced resistance and also helpful in reducing side effects. Hence, in this review, we focussed on the allosteric GSK-3β inhibitors and discussed their futuristic opportunities as anti-Alzheimer's compounds.
Project description:Immune checkpoint inhibitors (ICI) have widely reshaped the treatment paradigm of advanced cancer patients. Although multiple studies are currently evaluating these drugs as monotherapies or in combination, the choice of the most accurate statistical methods, endpoints and clinical trial designs to estimate the benefit of ICI remains an unsolved methodological issue. Considering the unconventional patterns of response or progression [i.e., pseudoprogression, hyperprogression (HPD)] observed with ICI, the application in clinical trials of novel response assessment tools (i.e., iRECIST) able to capture delayed benefit of immunotherapies and/or to quantify tumor dynamics and kinetics over time is an unmet clinical need. In addition, the proportional hazard model and the conventional measures of survival [i.e., median overall or progression free survival (PFS) and hazard ratios (HR)] might usually result inadequate in the estimation of the long-term benefit observed with ICI. For this reason, innovative methodologies such as milestone analysis, restricted mean survival time (RMST), parametric models (i.e., Weibull distribution, weighted log rank test), should be systematically investigated in clinical trials in order to adequately quantify the fraction of patients who are "cured", represented by the tails of the survival curves. Regarding predictive biomarkers, in particular PD-L1 expression, the integration and harmonization of the existing assays are urgently needed to provide clinicians with reliable diagnostic tests and to improve patient selection for immunotherapy. Finally, developing original and high-quality study designs, such as adaptive or basket biomarker enriched clinical trials, included in large collaborative platforms with multiple active sites and cross-sector collaboration, represents the successful strategy to optimally assess the benefit of ICI in the next future.