Unknown

Dataset Information

0

The mutational constraint spectrum quantified from variation in 141,456 humans.


ABSTRACT: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.

SUBMITTER: Karczewski KJ 

PROVIDER: S-EPMC7334197 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The mutational constraint spectrum quantified from variation in 141,456 humans.

Karczewski Konrad J KJ   Francioli Laurent C LC   Tiao Grace G   Cummings Beryl B BB   Alföldi Jessica J   Wang Qingbo Q   Collins Ryan L RL   Laricchia Kristen M KM   Ganna Andrea A   Birnbaum Daniel P DP   Gauthier Laura D LD   Brand Harrison H   Solomonson Matthew M   Watts Nicholas A NA   Rhodes Daniel D   Singer-Berk Moriel M   England Eleina M EM   Seaby Eleanor G EG   Kosmicki Jack A JA   Walters Raymond K RK   Tashman Katherine K   Farjoun Yossi Y   Banks Eric E   Poterba Timothy T   Wang Arcturus A   Seed Cotton C   Whiffin Nicola N   Chong Jessica X JX   Samocha Kaitlin E KE   Pierce-Hoffman Emma E   Zappala Zachary Z   O'Donnell-Luria Anne H AH   Minikel Eric Vallabh EV   Weisburd Ben B   Lek Monkol M   Ware James S JS   Vittal Christopher C   Armean Irina M IM   Bergelson Louis L   Cibulskis Kristian K   Connolly Kristen M KM   Covarrubias Miguel M   Donnelly Stacey S   Ferriera Steven S   Gabriel Stacey S   Gentry Jeff J   Gupta Namrata N   Jeandet Thibault T   Kaplan Diane D   Llanwarne Christopher C   Munshi Ruchi R   Novod Sam S   Petrillo Nikelle N   Roazen David D   Ruano-Rubio Valentin V   Saltzman Andrea A   Schleicher Molly M   Soto Jose J   Tibbetts Kathleen K   Tolonen Charlotte C   Wade Gordon G   Talkowski Michael E ME   Neale Benjamin M BM   Daly Mark J MJ   MacArthur Daniel G DG  

Nature 20200527 7809


Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annot  ...[more]

Similar Datasets

| S-EPMC8410591 | biostudies-literature
| S-EPMC5679271 | biostudies-literature
| S-EPMC11544006 | biostudies-literature
| S-EPMC2734157 | biostudies-other
| S-EPMC11702696 | biostudies-literature
| S-EPMC3568319 | biostudies-literature
| S-EPMC384974 | biostudies-literature
2013-09-01 | E-GEOD-49815 | biostudies-arrayexpress
2013-09-01 | GSE49815 | GEO
| S-EPMC9174330 | biostudies-literature