Project description:Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 'average' spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.
Project description:There is increasing evidence that animal groups can maintain coordinated behaviour and make collective decisions based on simple interaction rules. Effective collective action may be further facilitated by individual variation within groups, particularly through leader-follower polymorphisms. Recent studies have suggested that individual-level personality traits influence the degree to which individuals use social information, are attracted to conspecifics, or act as leaders/followers. However, evidence is equivocal and largely limited to laboratory studies. We use an automated data-collection system to conduct an experiment testing the relationship between personality and collective decision-making in the wild. First, we report that foraging flocks of great tits (Parus major) show strikingly synchronous behaviour. A predictive model of collective decision-making replicates patterns well, suggesting simple interaction rules are sufficient to explain the observed social behaviour. Second, within groups, individuals with more reactive personalities behave more collectively, moving to within-flock areas of higher density. By contrast, proactive individuals tend to move to and feed at spatial periphery of flocks. Finally, comparing alternative simulations of flocking with empirical data, we demonstrate that variation in personality promotes within-patch movement while maintaining group cohesion. Our results illustrate the importance of incorporating individual variability in models of social behaviour.
Project description:Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals. We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with models of non-interacting particles. We find that correlation increases sharply with the swarm's density, indicating that the interaction between midges is based on a metric perception mechanism. By means of numerical simulations we demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that correlation, rather than order, is the true hallmark of collective behaviour in biological systems.
Project description:The trophic position of a top predator, synonymous with food-chain length, is one of the most fundamental attributes of ecosystems. Stable isotope ratios of nitrogen (δ15N) have been used to estimate trophic position of organisms due to the predictable enrichment of 15N in consumer tissues relative to their diet. Previous studies in crocodilians have found upward ontogenetic shifts in their 'trophic position'. However, such increases are not expected from what is known about crocodilian diets because ontogenetic shifts in diet relate to taxonomic categories of prey rather than shifts to prey from higher trophic levels. When we analysed dietary information from the literature on the four Amazonian crocodilians, ontogenetic shifts in dietary-based trophic position (TPdiet) were minimal, and differed from those estimated using δ15N data (TPSIA). Thus, ontogenetic shifts in TPSIA may result not only from dietary assimilation but also from trophic discrimination factors (TDF or Δ 15N) associated with body size. Using a unique TDF value to estimate trophic position of crocodilians of all sizes might obscure conclusions about ontogenetic shifts in trophic position. Our findings may change the way that researchers estimate trophic position of organisms that show orders of magnitude differences in size across their life span.
Project description:Predation is a ubiquitous threat that often plays a central role in determining community dynamics. Predators can impact prey species by directly consuming them, or indirectly causing prey to modify their behavior. Direct consumption has classically been the focus of research on predator-prey interactions, but substantial evidence now demonstrates that the indirect effects of predators on prey populations are at least as strong as, if not stronger than, direct consumption. Social animals, particularly those that live in confined colonies, rely on coordinated actions that may be vulnerable to the presence of a predator, thus impacting the society's productivity and survival. To examine the effect of predators on the behavior of social animal societies, we observed the collective foraging of social spider colonies (Stegodyphus dumicola) when they interact with dangerous predatory ants either directly, indirectly, or both. We found that when colonies were exposed directly and indirectly to ant cues, they attacked prey with approximately 40-50% fewer spiders, and 40-90% slower than colonies that were not exposed to any predator cues. Furthermore, exposure to predatory ants disassociated the well-documented positive relationship between colony behavioral composition (proportion of bold spiders) and foraging aggressiveness (number of attackers) in S. dumicola, which is vital for colony growth. Thus, the indirect effects of predator presence may limit colony success. These results suggest that enemy presence could compromise the organizational attributes of animal societies.
Project description:Mobile animal groups provide some of the most compelling examples of self-organization in the natural world. While field observations of songbird flocks wheeling in the sky or anchovy schools fleeing from predators have inspired considerable interest in the mechanics of collective motion, the challenge of simultaneously monitoring multiple animals in the field has historically limited our capacity to study collective behaviour of wild animal groups with precision. However, recent technological advancements now present exciting opportunities to overcome many of these limitations. Here we review existing methods used to collect data on the movements and interactions of multiple animals in a natural setting. We then survey emerging technologies that are poised to revolutionize the study of collective animal behaviour by extending the spatial and temporal scales of inquiry, increasing data volume and quality, and expediting the post-processing of raw data.This article is part of the theme issue 'Collective movement ecology'.
Project description:The behavioural choices made by foragers regarding the use of resource patches have a direct influence on the energy balance of the individual. Given that several individual traits linked to the acquisition of spatially distributed resources increase with body size (e.g., energy requirements, resource ingestion rates, and movement capacity), it is reasonable to expect size dependencies in overall foraging behaviour. In this study, we tested how body size influences the number, duration, and frequency of foraging episodes in heterogeneous resource patches. To this end, we performed microcosm experiments using the aquatic amphipod Gammarus insensibilis as a model organism. An experimental maze was used to simulate a habitat characterised by resource-rich, resource-poor, and empty patches under controlled conditions. The patch use behaviour of 40 differently sized specimens foraging alone in the experimental maze was monitored via an advanced camera setup. Overall, we observed that individual body size exerted a major influence on the use of resource patches over time. Larger individuals had stronger preference for the resource-rich patches initially and visited them more frequently than smaller individuals, but for shorter periods of time. However, larger individuals subsequently decreased their use of resource-rich patches in favour of resource-poor patches, while smaller individuals continued to prefer resource-rich patches for the whole experimental time. With body size being a key organismal trait, our observations support the general understanding of foraging behaviours related to preference, patch use, and abandonment.
Project description:During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways.
Project description:Size-selective mortality is common in fish populations and can operate either in a positive size-selective fashion by harvesting larger-than-average fish or be negatively size-selective by harvesting smaller-than-average fish. Through various mechanisms (like genetic correlations among behaviour and life-history traits or direct selection on behaviour co-varying with growth rate or size-at-maturation), size-selection can result in evolutionary changes in behavioural traits. Theory suggests that both positive and negative size-selection without additional selection on behaviour favours boldness, while evolution of shyness is possible if the largest fish are harvested. Here we examined the impact of size-selective mortality on collective boldness across ontogeny using three experimental lines of zebrafish (Danio rerio) generated through positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations and then relaxed selection for 10 generations to examine evolutionarily fixed outcomes. We measured collective risk-taking during feeding (boldness) under simulated aerial predation threat, and across four contexts in presence/absence of a cichlid. Boldness decreased across ontogeny under aerial predation threat, and the small-harvested line was consistently bolder than controls. The large and small-harvested lines showed higher behavioural plasticity as larvae and developed personality earlier compared to the controls. The large-harvested line showed increased variability and plasticity in boldness throughout ontogeny. In the presence of a live predator, fish did not differ in boldness in three contexts compared to the controls, but the large-harvested line showed reduced behavioural plasticity across contexts than controls. Our results confirmed theory by demonstrating that size-selective harvesting evolutionarily alters collective boldness and its variability and plasticity.