Unknown

Dataset Information

0

Effects of Decomplexation Rates on Ternary Gene Complex Transfection with α-Poly(l-Lysine) or ε-Poly(l-Lysine) as a Decomplexation Controller in An Easy-To-Transfect Cell or A Hard-To-Transfect Cell.


ABSTRACT: The tight binding of pDNA with a cationic polymer is the crucial requirement that prevents DNA degradation from undesired DNase attack to safely deliver the pDNA to its target site. However, cationic polymer-mediated strong gene holding limits pDNA dissociation from the gene complex, resulting in a reduction in transfection efficiency. In this study, to control the decomplexation rate of pDNA from the gene complex in a hard-to-transfect cell or an easy-to-transfect cell, either α-poly(l-lysine) (APL) or ε-poly(l-lysine) (EPL) was incorporated into branched polyethylenimine (bPEI)-based nanocomplexes (NCs). Compared to bPEI/pDNA NCs, the addition of APL or EPL formed smaller bPEI-APL/pDNA NCs with similar zeta potentials or larger bPEI-EPL/pDNA NCs with reduced zeta potentials, respectively, due to the different characteristics of the primary amines in the two poly(l-lysine)s (PLs). Interestingly, although both bPEI-APL/pDNA NCs and bPEI-EPL/pDNA NCs showed similar pDNA compactness to bPEI/pDNA NCs, the addition of APL or EPL resulted in slower or faster pDNA release, respectively, from the bPEI-PL/pDNA NCs than from the bPEI/pDNA NCs. bPEI-EPL/pDNA NCs with a decomplexation enhancer (i.e., EPL) improved the transfection efficiency (TE) in both a hard-to-transfect HepG2 cell and an easy-to-transfect HEK293 cell. However, although a decomplexation inhibitor (i.e., APL) reduced the TE of bPEI-APL/pDNA NCs in both cells, the degree of reduction in the TE could be compensated by PL-mediated enhanced nuclear delivery, particularly in HepG2 cells but not HEK293 cells, because both PLs facilitate nuclear localization of the gene complex per its cellular uptake. In conclusion, a decomplexation rate controller could be a potential factor to establish a high TE and design clinically available gene complex systems.

SUBMITTER: Kim K 

PROVIDER: S-EPMC7356167 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of Decomplexation Rates on Ternary Gene Complex Transfection with α-Poly(l-Lysine) or ε-Poly(l-Lysine) as a Decomplexation Controller in An Easy-To-Transfect Cell or A Hard-To-Transfect Cell.

Kim Kyoungnam K   Ryu Kitae K   Cho Hana H   Shim Min Suk MS   Cho Yong-Yeon YY   Lee Joo Young JY   Lee Hye Suk HS   Kang Han Chang HC  

Pharmaceutics 20200528 6


The tight binding of pDNA with a cationic polymer is the crucial requirement that prevents DNA degradation from undesired DNase attack to safely deliver the pDNA to its target site. However, cationic polymer-mediated strong gene holding limits pDNA dissociation from the gene complex, resulting in a reduction in transfection efficiency. In this study, to control the decomplexation rate of pDNA from the gene complex in a hard-to-transfect cell or an easy-to-transfect cell, either <i>α</i>-poly(l-l  ...[more]

Similar Datasets

| S-EPMC10433478 | biostudies-literature
| S-EPMC5414217 | biostudies-literature
| S-EPMC4135771 | biostudies-literature
| S-EPMC6054053 | biostudies-literature
| S-EPMC8742527 | biostudies-literature
| S-EPMC2935060 | biostudies-literature
| S-EPMC7188835 | biostudies-literature
| S-EPMC4249222 | biostudies-literature
| S-EPMC7504584 | biostudies-literature
| S-EPMC8506220 | biostudies-literature