Project description:Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients' cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Project description:CD39/NTPDase1 has emerged as an important molecule that contributes to maintain inflammatory and coagulatory homeostasis. Various studies have hypothesized the possible role of CD39 in COVID-19 pathophysiology since no confirmatory data shed light in this regard. Therefore, we aimed to quantify CD39 expression on COVID-19 patients exploring its association with severity clinical parameters and ICU admission, while unraveling the role of purinergic signaling on thromboinflammation in COVID-19 patients. We selected a prospective cohort of patients hospitalized due to severe COVID-19 pneumonia (n=75), a historical cohort of Influenza A pneumonia patients (n=18) and sex/age-matched healthy controls (n=30). CD39 was overexpressed in COVID-19 patients' plasma and immune cell subsets and related to hypoxemia. Plasma soluble form of CD39 (sCD39) was related to length of hospital stay and independently associated with intensive care unit admission (adjusted odds ratio 1.04, 95%CI 1.0-1.08, p=0.038), with a net reclassification index of 0.229 (0.118-0.287; p=0.036). COVID-19 patients showed extracellular accumulation of adenosine nucleotides (ATP and ADP), resulting in systemic inflammation and pro-coagulant state, as a consequence of purinergic pathway dysregulation. Interestingly, we found that COVID-19 plasma caused platelet activation, which was successfully blocked by the P2Y12 receptor inhibitor, ticagrelor. Therefore, sCD39 is suggested as a promising biomarker for COVID-19 severity. As a conclusion, our study indicates that CD39 overexpression in COVID-19 patients could be indicating purinergic signaling dysregulation, which might be at the basis of COVID-19 thromboinflammation disorder.
Project description:For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.
Project description:Purpose of reviewSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged in December 2019, rapidly reaching global pandemic proportions. Coronavirus disease 2019 (COVID-19) has presented unique challenges to the rheumatology community. It is known that many individuals with rheumatic disease are at increased risk of severe disease from other infections, sparking a similar fear for COVID-19. In addition, medications routinely used in rheumatology practice are being trialled as treatments, with the potential for drug shortages for rheumatology patients.Recent findingsUnderlying comorbidities and active disease are associated with worse COVID-19 outcomes in patients with rheumatic disease. Tocilizumab and hydroxychloroquine have not proven to be effective treatments in the management of COVID-19. Telehealth has become an essential tool for the rheumatology community to monitor patients during the pandemic. In this article, we summarise the available COVID-19 evidence that is of relevance to the rheumatology community. We discuss the risk of contracting COVID-19 in individuals with rheumatic disease, along with presenting features and clinical outcomes. We provide an overview of the treatments for COVID-19 which have significance for rheumatology. We highlight published recommendations which can guide our management of rheumatic disease populations during this pandemic. Finally, we discuss the challenges in delivering effective care virtually and present methods and tools which could be adapted for use.
Project description:Since first being tracked in China in late 2019, the effects of the COVID-19 coronavirus have shaped global patterns of morbidity and mortality, as well as exposed the strengths and limitations of health care systems and social safety nets. Without question, reporting of its impact has been bolstered in large part through near real-time daily mapping of cases and fatalities. Though these maps serve as an effective political and social tool in communicating disease impact, most visualizations largely over-emphasize their usefulness for tracking disease progression and appropriate responses. Messy and inconsistent health data are a big part of this problem, as is a paucity of high-resolution spatial data to monitor health outcomes. Another issue is that the ease of producing out-of-the box products largely out paces the response to the core challenges inherent in the poor quality of most geo-referenced data. Adopting a GIScience approach, and in particular, making use of location-based intelligence tools, can improve the shortcomings in data reporting and more accurately reveal how COVID-19 will have a long-term impact on global health.
Project description:Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Project description:Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Project description:Extracellular ATP activates P2 purinergic receptors. Whether purinergic signaling is functionally coupled to cellular senescence is largely unknown. We find that oxidative stress induced release of ATP and caused senescence in human lung fibroblasts. Inhibition of P2 receptors limited oxidative stress-induced senescence, while stimulation with exogenous ATP promoted premature senescence. Pharmacological inhibition of P2Y11 receptor (P2Y11R) inhibited premature senescence induced by either oxidative stress or ATP, while stimulation with a P2Y11R agonist was sufficient to induce cellular senescence. Our data show that both extracellular ATP and a P2Y11R agonist induced calcium (Ca++) release from the endoplasmic reticulum (ER) and that either inhibition of phospholipase C or intracellular Ca++ chelation impaired ATP-induced senescence. We also find that Ca++ that was released from the ER, following ATP-mediated activation of phospholipase C, entered mitochondria in a manner dependent on P2Y11R activation. Once in mitochondria, excessive Ca++ promoted the production of reactive oxygen species in a P2Y11R-dependent fashion, which drove development of premature senescence of lung fibroblasts. Finally, we show that conditioned medium derived from senescent lung fibroblasts, which were induced to senesce through the activation of ATP/P2Y11R-mediated signaling, promoted the proliferation of triple-negative breast cancer cells and their tumorigenic potential by secreting amphiregulin. Our study identifies the existence of a novel purinergic signaling pathway that links extracellular ATP to the development of a protumorigenic premature senescent phenotype in lung fibroblasts that is dependent on P2Y11R activation and ER-to-mitochondria calcium signaling.
Project description:Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.