Project description:BACKGROUND:L-carnitine (LC) is used as a supplement by recreationally-active, competitive and highly trained athletes. This systematic review aims to evaluate the effect of prolonged LC supplementation on metabolism and metabolic modifications. METHODS:A literature search was conducted in the MEDLINE (via PubMed) and Web of Science databases from the inception up February 2020. Eligibility criteria included studies on healthy human subjects, treated for at least 12?weeks with LC administered orally, with no drugs or any other multi-ingredient supplements co-ingestion. RESULTS:The initial search retrieved 1024 articles, and a total of 11 studies were finally included after applying inclusion and exclusion criteria. All the selected studies were conducted with healthy human subjects, with supplemented dose ranging from 1?g to 4?g per day for either 12 or 24?weeks. LC supplementation, in combination with carbohydrates (CHO) effectively elevated total carnitine content in skeletal muscle. Twenty-four-weeks of LC supplementation did not affect muscle strength in healthy aged women, but significantly increased muscle mass, improved physical effort tolerance and cognitive function in centenarians. LC supplementation was also noted to induce an increase of fasting plasma trimethylamine-N-oxide (TMAO) levels, which was not associated with modification of determined inflammatory nor oxidative stress markers. CONCLUSION:Prolonged LC supplementation in specific conditions may affect physical performance. On the other hand, LC supplementation elevates fasting plasma TMAO, compound supposed to be pro-atherogenic. Therefore, additional studies focusing on long-term supplementation and its longitudinal effect on the cardiovascular system are needed.
Project description:It is now established that a protein can switch between multiple conformations to enable altered functions. Several pathogens including SARS COV2 utilize context-dependent conformational switches of particular proteins to invade host membrane to establish infections. In this perspective, we first discuss the understanding of the conformational switch of a protein towards the productive infections as a dark side of nature. Next, the unexplored binary combination of the sequences of SARS COV2 spike protein and the similarity with diverse pathogen derived proteins have been discussed to obtain novel molecular insights into the process of infection.
Project description:Herbal infusions are highly popular beverages consumed daily due to their health benefits and antioxidant properties. However, the presence of plant toxins, such as tropane alkaloids, constitutes a recent health concern for herbal infusions. This work presents an optimized and validated methodology based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction procedure followed by Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC-ToF-MS) for the determination of tropane alkaloids (atropine, scopolamine, anisodamine, and homatropine) in herbal infusions, in accordance with criteria established by Commission Recommendation EU No. 2015/976. One of the seventeen samples was contaminated with atropine, exceeding the current European regulation regarding tropane alkaloids. In addition, this study evaluated the antioxidant capacity of common herbal infusions available on Portuguese markets, indicating the high antioxidant capacity of yerba mate (Ilex paraguariensis), lemon balm (Melissa officinalis), and peppermint (Mentha x piperita).
Project description:The spread of misinformation on the internet regarding the COVID-19 pandemic, such as unproven or fake cures, has been a serious concern. However, the extent to which social media usage affects individuals' health behavior, particularly when reliable information is scarce, is not well understood. This study evaluates the impact of social media usage on individuals' responses to the COVID-19 pandemic, such as demand for necessities and social distancing. We conduct an original online survey of 1804 Japanese respondents in March 2020. Japan is suitable because it confirmed COVID-19 cases earlier than most other countries. Scientific evidence about the coronavirus and protective measures was scarce in the initial pandemic phase, despite the spread of unconfirmed rumors. Our analysis focuses on the usage of Twitter, Facebook, and Instagram. We use the entropy balancing method to control for heterogeneity in observed characteristics between social media users and non-users. The results show that while users are more likely to maintain social distancing practices, they are also more likely to take measures whose reliability is not scientifically confirmed, such as eating fermented soybeans. Although previous studies emphasize the negative effects of social media, our results suggest that it has both bright and dark sides.
Project description:Marine heatwaves can cause coral bleaching and reduce coral cover on reefs, yet few studies have identified "bright spots," where corals have recently shown a capacity to survive such pressures. We analyzed 7714 worldwide surveys from 1997 to 2018 along with 14 environmental and temperature metrics in a hierarchical Bayesian model to identify conditions that contribute to present-day coral cover. We also identified locations with significantly higher (i.e., "bright spots") and lower coral cover (i.e., "dark spots") than regionally expected. In addition, using 4-km downscaled data of Representative Concentration Pathways (RCPs) 4.5 and 8.5, we projected coral cover on reefs for the years 2050 and 2100. Coral cover on modern reefs was positively associated with historically high maximum sea-surface temperatures (SSTs), and negatively associated with high contemporary SSTs, tropical-cyclone frequencies, and human-population densities. By 2100, under RCP8.5, we projected relative decreases in coral cover of >40% on most reefs globally but projected less decline on reefs in Indonesia, Malaysia, the central Philippines, New Caledonia, Fiji, and French Polynesia, which should be focal localities for multinational networks of protected areas.
Project description:BackgroundA growing number of studies have sought to examine the health associations of workplace social capital; however, evidence of associations with overweight is sparse. We examined the association between individual perceptions of workplace social capital and overweight among Japanese male and female employees.Methodology/principal findingsWe conducted a cross-sectional survey among full-time employees at a company in Osaka prefecture in February 2012. We used an 8-item measure to assess overall and sub-dimensions of workplace social capital, divided into tertiles. Of 1050 employees, 849 responded, and 750 (624 men and 126 women) could be linked to annual health check-up data in the analysis. Binomial logistic regression models were used to calculate odds ratios and 95% confidence intervals for overweight (body mass index: ≥ 25 kg/m(2), calculated from measured weight and height) separately for men and women. The prevalence of overweight was 24.5% among men and 14.3% among women. Among men, low levels of bonding and linking social capital in the workplace were associated with a nearly 2-fold risk of overweight compared to high corresponding dimensions of social capital when adjusted for age, sleep hours, physiological distress, and lifestyle. In contrast, among women we found lower overall and linking social capital to be associated with lower odds for overweight even after covariate adjustment. Subsequently, we used multinomial logistic regression analyses to assess the relationships between a 1 standard deviation (SD) decrease in mean social capital and odds of underweight/overweight relative to normal weight. Among men, a 1-SD decrease in overall, bonding, and linking social capital was significantly associated with higher odds of overweight, but not with underweight. Among women, no significant associations were found for either overweight or underweight.Conclusions/significanceWe found opposite gender relationships between perceived low linking workplace social capital and overweight among Japanese employees.
Project description:Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed.
Project description:Capillary morphogenesis gene 2 (CMG2) is a type I membrane protein involved in the homeostasis of the extracellular matrix. While it shares interesting similarities with integrins, its exact molecular role is unknown. The interest and knowledge about CMG2 largely stems from the fact that it is involved in two diseases, one infectious and one genetic. CMG2 is the main receptor of the anthrax toxin, and knocking out this gene in mice renders them insensitive to infection with Bacillus anthracis spores. On the other hand, mutations in CMG2 lead to a rare but severe autosomal recessive disorder in humans called Hyaline Fibromatosis Syndrome (HFS). We will here review what is known about the structure of CMG2 and its ability to mediate anthrax toxin entry into cell. We will then describe the limited knowledge available concerning the physiological role of CMG2. Finally, we will describe HFS and the consequences of HFS-associated mutations in CMG2 at the molecular and cellular level.
Project description:The purpose of this review is to update the reader on the relevance of autonomic nervous system imbalance in clinical cardiology. Increased sympathetic tone associates with the metabolic syndrome, hypertension and cardiac arrhythmias. With the kidneys playing a pivotal role in increased peripheral resistance, sodium and water retention and other mechanisms, renal denervation (RD) may theoretically restore autonomic imbalance and improve cardiovascular outcomes. Landmark RD trials and novel uses for RD in cardiac arrhythmia management are discussed.
Project description:Semiconductor nanoplatelets (NPLs), with their large exciton binding energy, narrow photoluminescence (PL), and absence of dielectric screening for photons emitted normal to the NPL surface, could be expected to become the fastest luminophores amongst all colloidal nanostructures. However, super-fast emission is suppressed by a dark (optically passive) exciton ground state, substantially split from a higher-lying bright (optically active) state. Here, the exciton fine structure in 2-8 monolayer (ML) thick Csn - 1 Pbn Br3n + 1 NPLs is revealed by merging temperature-resolved PL spectra and time-resolved PL decay with an effective mass model taking quantum confinement and dielectric confinement anisotropy into account. This approach exposes a thickness-dependent bright-dark exciton splitting reaching 32.3 meV for the 2 ML NPLs. The model also reveals a 5-16 meV splitting of the bright exciton states with transition dipoles polarized parallel and perpendicular to the NPL surfaces, the order of which is reversed for the thinnest NPLs, as confirmed by TR-PL measurements. Accordingly, the individual bright states must be taken into account, while the dark exciton state strongly affects the optical properties of the thinnest NPLs even at room temperature. Significantly, the derived model can be generalized for any isotropically or anisotropically confined nanostructure.