Project description:Relapse remains the main cause of treatment failure in acute myeloid leukemia (AML) undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Emerging evidence has demonstrated that AML patients might benefit from maintenance therapy post-transplantation, especially for high-risk AML patients. In this mini-review, we will summarize targeted drugs, such as hypomethylating agents, FLT3 inhibitors and isocitrate dehydrogenase inhibitors, as maintenance therapy post-transplantation in AML patients undergoing allo-HSCT.
Project description:Decitabine is a hypomethylating agent that irreversibly inhibits DNA methyltransferase I, inducing leukemic differentiation and re-expression of epigenetically silenced putative tumor antigens. We assessed safety and efficacy of decitabine maintenance after allogeneic transplantation for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Decitabine maintenance may help eradicate minimal residual disease, decrease the incidence of graft-versus-host disease (GVHD), and facilitate a graft-versus-leukemia effect by enhancing the effect of T regulatory lymphocytes. Patients with AML/MDS in complete remission (CR) after allotransplantation started decitabine between day +50 and +100. We investigated 4 decitabine doses in cohorts of 4 patients: 5, 7.5, 10, and 15 mg/m(2)/day × 5 days every 6 weeks, for a maximum 8 cycles. The maximum tolerated dose (MTD) was defined as the maximum dose at which ≤ 25% of people experience dose-limiting toxicities during the first cycle of treatment. Twenty-four patients were enrolled and 22 were evaluable. All 4 dose levels were completed and no MTD was reached. Overall, decitabine maintenance was well tolerated. Grade 3 and 4 hematological toxicities were experienced by 75% of patients, including all patients treated at the highest dose level. Nine patients completed all 8 cycles and 8 of them remain in CR. Nine patients died from relapse (n = 4), infectious complications (n = 3), and GVHD (n = 2). Most occurrences of acute GVHD were mild and resolved without interruption of treatment; 1 patient died of acute gut GVHD. Decitabine maintenance did not clearly impact the rate of chronic GVHD. Although there was a trend of increased FOXP3 expression, results were not statistically significant. In conclusion, decitabine maintenance is associated with acceptable toxicities when given in the post-allotransplantation setting. Although the MTD was not reached, the dose of 10 mg/m(2) for 5 days every 6 weeks appeared to be the optimal dose rather than 15 mg/m(2), where most hematological toxicities occurred.
Project description:Objective: This study aimed to evaluate the maintenance therapy following an anti-CD19-CAR T-cell therapy for a B-cell acute lymphoblastic leukemia (ALL) patient who relapsed after allogeneic hematopoietic cell transplantation (allo-HSCT) and investigate the effect of donor stem cells and donor T lymphocyte infusion on the amplification of CD19 CAR-T cells. Methods: One refractory B-ALL patient relapsed after murine CD19 CAR-T cell therapy followed by a sibling allo-HSCT. He underwent a humanized CD19 CAR-T cell therapy followed by donor stem cell and donor T lymphocytes infusions as maintenance therapy in our hospital. The level of cytokines, the proportion of CD19 CAR-T cell, the level of CAR19 DNA expression in the peripheral blood, and the proportion of leukemia cells and donor chimerism in the bone marrow were detected. Correspondingly, T lymphocytes from the C57 spleen were separated to modify the CD19 CAR lentivirus and refused into C57 mice, and after 14 days, the B lymphocytes from C57 mice were separated and refused into the same C57 mice. The CD19 CAR T cells, B cells, and CD19 CAR gene counts in the peripheral blood were evaluated at different time points. Results: ①The patient achieved a complete response (CR) 14 days after a humanized CD19 CAR-T therapy with grade 1 cytokine release syndrome (CRS) and restored a donor chimerism to 99.76%. ② Following the remission from humanized CD19 CAR-T therapy, the patient received a maintenance therapy of donor stem cell infusion. Mild graft-versus-host disease (GVHD) manifested 24 days after infusion with an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood. It fell with the remission of GVHD. The patient maintained CR and 99.69% donor chimerism during this period. ③ Throughout the subsequent donor T lymphocytes maintenance therapy, mild GVHD surfaced12 days after infusion without an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood. The patient maintained CR and 99.87% donor chimerism during this period. ④ In vivo experiments on C57 mice confirmed that the proportion of CD19 CAR-T cells and the level of CAR19 DNA expression were upregulated in mice following CAR-T cell infusion, accompanied by depletion of CD19(+) B lymphocyte. After infusion of CD19(+) B lymphocyte cells, an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression in the peripheral blood were observed again. Conclusions: The infusion of donor stem cells and donor T lymphocytes could be used as a maintenance treatment after CD19 CAR-T cell therapy for B-ALL patients who relapsed after allo-HSCT. Infusion of donor stem cells induced an increased proportion of CD19 CAR-T cells and an increased level of CAR19 DNA expression with the occurrence of GVHD. It might lead to further elimination of minimal residual disease.
Project description:Mutations in the FLT3 gene are associated with poor prognosis in patients with AML, even after consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in first remission. Treatment failure in FLT3-mutated AML is largely driven by excessive risk of relapse compared to other genetic subtypes, including in patients post-alloHCT. As a result, there is substantial interest in studying posttransplant maintenance therapy in FLT3-mutated AML as an approach to optimize disease control and improve long-term outcomes. Clinical trials utilizing posttransplant FLT3 inhibitors, such as sorafenib and midostaurin, have shown feasibility, safety, and encouraging posttransplant outcomes, and there are ongoing studies using newer-generation tyrosine-kinase inhibitors as posttransplant maintenance therapy. Here, we review the toxicities and efficacy of FLT3 inhibitors as posttransplant maintenance, recommendations on the use of FLT3 inhibitors by international consensus guidelines, and highlight key remaining questions.
Project description:BackgroundAcute myeloid leukemia (AML) patients with a Fms-like tyrosine kinase 3 (FLT3) mutation have a high incidence of relapse despite allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a subsequent poor prognosis. FLT3 inhibitors (FLT3i) have been suggested to reduce the post-transplant relapse risk in recent studies. As more evidence is accumulated, we perform the present meta-analysis to assess the efficacy and safety of FLT3i as post-transplant maintenance therapy in AML patients.MethodsLiterature search was performed in public databases from inception to December 31, 2021. Overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), non-relapse mortality (NRM), graft-versus-host disease (GVHD) and adverse events were compared between FLT3i and control groups. Pooled hazard ratio (HR) or relative risk (RR) with corresponding 95% confidence interval (CI) were calculated.ResultsWe identified 12 eligible studies with 2282 FLT3-mutated AML patients who had received HSCT. There was no between-study heterogeneity and a fix-effect model was used. Post-transplant FLT3i maintenance significantly prolonged OS (HR = 0.41, 95%CI: 0.32-0.52, p < 0.001) and RFS (HR = 0.39, 95%CI 0.31-0.50, p < 0.001), and reduced CIR (HR = 0.31, 95%CI 0.20-0.46, p < 0.001) as compared with control. There were no significant risk differences in NRM (RR = 0.69, 95%CI 0.41-1.17, p = 0.169), acute GVHD (RR = 1.17, 95%CI 0.93-1.47, p = 0.175), chronic GVHD (RR = 1.31, 95%CI 0.91-1.39, p = 0.276) and grade ≥3 adverse events between both groups, except for skin toxicity (RR = 5.86, 95%CI 1.34-25.57, p = 0.019).ConclusionPost-transplant FLT3i maintenance can improve survival and reduce relapse in FLT3-mutated AML patients and is tolerable.
Project description:In acute leukemia, advances have been made in therapeutic strategies centered on allogeneic hematopoietic stem cell transplantation (allo-SCT), three of which are presented here. The indication of allo-SCT for acute myeloid leukemia (AML) in 1st complete remission (CR1) has been debated. Genomic medicine has helped us gain a deeper understanding of this disease, some of which may serve as prognostic factors. Such genetic abnormalities could also help measure minimal residual disease (MRD) and provide additional clues to estimate the efficacy of chemotherapy. Combined with existing prognostic factors, these data can be used to construct a more accurate prognostic model, providing an optimal indication of allo-SCT for AML in CR1. Furthermore, overall treatment algorithms for high-risk AML after allo-SCT should include prophylactic and pre-emptive treatment to prevent relapse. These include immunotherapy using donor lymphocyte infusion (DLI), FLT3 inhibitors in FLT3-mutated AML, hypomethylating agents, or a combination of DLI with these agents. Clinical trials are currently ongoing to elucidate the role of these strategies, which will lead to a risk-adapted treatment for preventing relapse in high-risk AML. CD19-targeted chimeric antigen receptor (CAR) T-cell therapy induces a remarkable response in B-acute lymphoid leukemia (B-ALL); however, relapse remains a major problem. In this regard, allo-SCT as a consolidation treatment after CAR-T cell therapy for B-ALL is recommended for pediatric and adult patients. Achieving complete remission (CR) with CAR-T cell therapy is considered a promising bridging therapy to allo-SCT. Novel CAR-T treatment techniques are being developed to change their role as a pre-transplant treatment.
Project description:BackgroundThe somatic mutation of fms-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia (AML) is associated with increased risk of relapse and lower survival rates. FLT3i as maintenance after allogeneic hematopoietic stem cell transplant (allo-HSCT) are under study to prevent disease relapse, but real-world data are lacking.MethodsWe performed a single center, retrospective cohort study and analyzed patients who had FLT3-mutated AML and underwent allogeneic-HSCT between January 2011 to June 2022 at the University of Chicago. We identified 23 patients who received FLT3i maintenance therapy post-allo-HSCT and compared their outcomes against 57 patients who did not. Primary outcome was disease-free survival (DFS). Secondary outcomes include overall survival (OS) and relapse rate.ResultsFLT3i maintenance therapy was started at a median 59 days (range, 29-216 days) after allo-HSCT with median duration of 287 days (range, 15-1,194 days). Maintenance therapy was well tolerated. Overall, the improvement in DFS rates for patients after they were placed on FLT3i maintenance therapy was not significant [hazard ratio (HR) for relapse or death =0.65, 95% confidence interval (CI): 0.32-1.31, P=0.23]. However, when adjusted for the conditioning regimen and donor status, the differences were statistically significant with improvement in DFS and OS for patients on FLT3i maintenance (HR for OS =0.42, 95% CI: 0.18-0.95, P=0.04).ConclusionsWhen adjusting for conditioning regimen and donor status, there was a significant improvement in DFS and OS for patients who received FLT3i maintenance therapy compared to those who did not. Randomized prospective studies may provide more insight.