Unknown

Dataset Information

0

Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication.


ABSTRACT: DNA2 is an essential nuclease-helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5'-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2, 5'-flaps are thought to accumulate on the lagging strand, resulting in DNA damage-checkpoint arrest and cell death. In line with Dna2's role in RF recovery, we find that the loss of Dna2 results in severe chromosome under-replication downstream of endogenous and exogenous RF-stalling. Importantly, unfaithful chromosome replication in Dna2-mutant cells is exacerbated by Pif1, which triggers the DNA damage checkpoint along a pathway involving Pif1's ability to promote homologous recombination-coupled replication. We propose that Dna2 fulfils its essential function by promoting RF recovery, facilitating replication completion while suppressing excessive RF restart by recombination-dependent replication (RDR) and checkpoint activation. The critical nature of Dna2's role in controlling the fate of stalled RFs provides a framework to rationalize the involvement of DNA2 in Seckel syndrome and cancer.

SUBMITTER: Falquet B 

PROVIDER: S-EPMC7367196 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication.

Falquet Benoît B   Ölmezer Gizem G   Enkner Franz F   Klein Dominique D   Challa Kiran K   Appanah Rowin R   Gasser Susan M SM   Rass Ulrich U  

Nucleic acids research 20200701 13


DNA2 is an essential nuclease-helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5'-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2  ...[more]

Similar Datasets

| S-EPMC3367086 | biostudies-literature
| S-EPMC2636562 | biostudies-literature
| S-EPMC8586334 | biostudies-literature
| S-EPMC3670343 | biostudies-other
| S-EPMC3655473 | biostudies-literature
| S-EPMC4253442 | biostudies-literature
| S-EPMC11405836 | biostudies-literature
| S-EPMC5520492 | biostudies-literature
| S-EPMC6043852 | biostudies-literature
| S-EPMC3439918 | biostudies-literature