Unknown

Dataset Information

0

Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment.


ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.

SUBMITTER: Calio ML 

PROVIDER: S-EPMC7373761 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment.

Calió Michele Longoni ML   Henriques Elisandra E   Siena Amanda A   Bertoncini Clélia Rejane Antonio CRA   Gil-Mohapel Joana J   Rosenstock Tatiana Rosado TR  

Frontiers in neuroscience 20200715


Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial  ...[more]

Similar Datasets

| S-EPMC4404431 | biostudies-literature
| S-EPMC8460779 | biostudies-literature
| S-EPMC7056361 | biostudies-literature
| S-EPMC4220794 | biostudies-literature
| S-EPMC4404438 | biostudies-literature
2003-11-14 | GSE833 | GEO
2012-07-26 | GSE39644 | GEO
2012-07-25 | E-GEOD-39644 | biostudies-arrayexpress
| S-EPMC5974248 | biostudies-literature
| S-EPMC4938715 | biostudies-literature