Project description:In the classical descriptions of schizophrenia, Kraepelin and Bleuler recognized disorganization and impoverishment of mental activity as fundamental symptoms. Their classical descriptions also included a tendency to persisting disability. The psychopathological processes underlying persisting disability in schizophrenia remain poorly understood. The delineation of a core deficit underlying persisting disability would be of value in predicting outcome and enhancing treatment. We tested the hypothesis that mental disorganization and impoverishment are associated with persisting impairments of cognition and role function, and together reflect a latent core deficit that is discernible in cases diagnosed by modern criteria. We used Confirmatory Factor Analysis to determine whether measures of disorganization, mental impoverishment, impaired cognition, and role functioning in 40 patients with schizophrenia represent a single latent variable. Disorganization scores were computed from the variance shared between disorganization measures from 3 commonly used symptom scales. Mental impoverishment scores were computed similarly. A single factor model exhibited a good fit, supporting the hypothesis that these measures reflect a core deficit. Persisting brain disorders are associated with a reduction in post-movement beta rebound (PMBR), the characteristic increase in electrophysiological beta amplitude that follows a motor response. Patients had significantly reduced PMBR compared with healthy controls. PMBR was negatively correlated with core deficit score. While the symptoms constituting impoverished and disorganized mental activity are dissociable in schizophrenia, nonetheless, the variance that these 2 symptom domains share with impaired cognition and role function, appears to reflect a pathophysiological process that might be described as the core deficit of classical schizophrenia.
Project description:Hypertension is a serious medical problem affecting a large population worldwide. Liddle syndrome is a hereditary form of early onset hypertension caused by mutations in the epithelial Na+ channel (ENaC). The mutated region, called the PY (Pro-Pro-x-Tyr) motif, serves as a binding site for Nedd4-2, an E3 ubiquitin ligase from the HECT family. Nedd4-2 binds the ENaC PY motif via its WW domains, normally leading to ENaC ubiquitylation and endocytosis, reducing the number of active channels at the plasma membrane. In Liddle syndrome, this endocytosis is impaired due to the inability of the mutated PY motif in ENaC to properly bind Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na+ (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Small molecules/compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve to alleviate hypertension. PUBLICATION HISTORY : Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
Project description:Liddle syndrome is characterized by hypertension, hypokalemia, and metabolic alkalosis. This paper presents the case of a 29-year-old man with Liddle syndrome complicated by stage D heart failure and stage 4 chronic kidney disease. Despite appropriate management, this patient developed refractory cardiogenic shock, ultimately requiring mechanical circulatory support with venoarterial extracorporeal membrane oxygenation and expedited heart transplant listing.
Project description:IntroductionLiddle syndrome is an autosomal dominantly inherited disorder usually arising from single mutations of the genes that encode for the alpha, beta and gamma epithelial sodium channel (ENaC) subunits. This leads to refractory hypertension, hypokalaemia, metabolic alkalosis, hyporeninaemia and hypoaldosteronism, through over-activation of the ENaC.Case presentationWe describe a 5-day old neonate who presented with severe hypernatraemic dehydration requiring admission to Steve Biko Academic Hospital in South Africa in 2012. Further evaluation revealed features in keeping with Liddle syndrome. Two compound heterozygous mutations located at different subunits encoding the ENaC were detected following genetic sequencing done in 2020. The severe clinical phenotype observed here could be attributed to the synergistic effect of these known pathological mutations, but may also indicate that one of the other variants detected has hitherto undocumented pathological effects.Management and outcomeThis child's treatment course was complicated by poor adherence to therapy, requiring numerous admissions over the years. Adequate blood pressure control was achieved only after the addition of amiloride at the end of 2018, which raised the suspicion of an ENaC abnormality.ConclusionTo our knowledge, this is the first Liddle syndrome case where a combined effect from mutations resulted in severe disease. This highlights the importance of early recognition and management of this highly treatable genetic disease to prevent the grave sequelae associated with long-standing hypertension. Whole exome sequencing may assist in the detection of known mutations, but may also unveil new potentially pathological variants.What this study addsThis study highlights the importance of developing a high index of suspicion of tubulopathy such as Liddle syndrome for any child presenting with persistent hypertension associated with hypokalaemic metabolic alkalosis.
Project description:BackgroundLiddle syndrome (LS) is an autosomal dominant disorder caused by single-gene mutations of the epithelial sodium channel (ENaC). It is characterized by early-onset hypertension, spontaneous hypokalemia and low plasma renin and aldosterone concentrations. In this study, we reported an LS pedigree with normokalemia resulting from a novel SCNN1G frameshift mutation.MethodsPeripheral blood samples were collected from the proband and eight family members for DNA extraction. Next-generation sequencing and Sanger sequencing were performed to identify the SCNN1G mutation. Clinical examinations were used to comprehensively evaluate the phenotypes of two patients.ResultsGenetic analysis identified a novel SCNN1G frameshift mutation, p.Arg586Valfs*598, in the proband with LS. This heterozygous frameshift mutation generated a premature stop codon and deleted the vital PY motif of ENaC. The same mutation was present in his elder brother with LS, and his mother without any LS symptoms. Biochemical examination showed normokalemia in the three mutation carriers. The mutation identified was not found in any other family members, 100 hypertensives, or 100 healthy controls.ConclusionsOur study identified a novel SCNN1G frameshift mutation in a Chinese family with LS, expanding the genetic spectrum of SCNN1G. Genetic testing helped us identify LS with a pathogenic mutation when the genotypes and phenotype were not completely consistent because of the hypokalemia. This case emphasizes that once a proband is diagnosed with LS by genetic testing, family genetic sequencing is necessary for early diagnosis and intervention for other family members, to protect against severe cardiovascular complications.
Project description:Cognitive deficits contribute to functional disability in patients with schizophrenia and may be related to altered functional networks that serve cognition. We evaluated the integrity of major functional networks and assessed their role in supporting two cognitive functions affected in schizophrenia: processing speed (PS) and working memory (WM). Resting-state functional magnetic resonance imaging (rsfMRI) data, N = 261 patients and 327 controls, were aggregated from three independent cohorts and evaluated using Enhancing NeuroImaging Genetics through Meta Analysis rsfMRI analysis pipeline. Meta- and mega-analyses were used to evaluate patient-control differences in functional connectivity (FC) measures. Canonical correlation analysis was used to study the association between cognitive deficits and FC measures. Patients showed consistent patterns of cognitive and resting-state FC (rsFC) deficits across three cohorts. Patient-control differences in rsFC calculated using seed-based and dual-regression approaches were consistent (Cohen's d: 0.31?±?0.09 and 0.29?±?0.08, p?<?10-4 ). RsFC measures explained 12-17% of the individual variations in PS and WM in the full sample and in patients and controls separately, with the strongest correlations found in salience, auditory, somatosensory, and default-mode networks. The pattern of association between rsFC (within-network) and PS (r = .45, p = .07) and WM (r = .36, p = .16), and rsFC (between-network) and PS (r = .52, p = 8.4?×?10-3 ) and WM (r = .47, p = .02), derived from multiple networks was related to effect size of patient-control differences in the functional networks. No association was detected between rsFC and current medication dose or psychosis ratings. Patients demonstrated significant reduction in several FC networks that may partially underlie some of the core neurocognitive deficits in schizophrenia. The strength of connectivity-cognition relationships in different networks was strongly associated with network's vulnerability to schizophrenia.
Project description:Schizophrenia is a clinical syndrome composed of a group of symptoms involving many obstacles such as perception, thinking, emotion, behavior, and the disharmony of mental activities. Schizophrenia is one of the top ten causes of disability globally, accounting for about 1% of the global population. Previous studies have shown that schizophrenia has solid genetic characteristics. However, the diagnosis of schizophrenia mainly depends on symptomatic manifestations, and no gene can be used as a clear diagnostic marker at present. This study explored the hub genes of schizophrenia by bioinformatics analysis. Three datasets were selected and downloaded from the GEO database (GSE53987, GSE21138, and GSE27383). GEO2R, NCBI's online analysis tool, is used to screen out significant gene expression differences. The genes were functionally enriched by GO and KEGG enrichment analysis. On this basis, the hub genes were explored through Cytoscape software, and the immune infiltration analysis and diagnostic value of the screened hub genes were judged. Finally, four hub genes (NFKBIA, CDKN1A, BTG2, GADD45B) were screened. There was a significant correlation between two hub genes (NFKBIA, BTG2) and resting memory CD4 T cells. The ROC curve results showed that all four hub genes had diagnostic value.
Project description:BackgroundThe International Classification of Functioning, Disability, and Health Core Sets (ICF-CSs) for schizophrenia are a set of categories for assessing functioning in persons with this health condition. This study aimed to: a) estimate the network structure of the Brief ICF-CS for schizophrenia, b) examine the community structure (categories strongly clustered together) underlying this network, and c) identify the most central categories within this network.MethodsA total of 638 health professionals from different backgrounds and with a significant role in the treatment of individuals with schizophrenia participated in a series of Delphi studies. Based on their responses we used the Ising model to estimate the network structure of the 25-category Brief ICF-CS, and then estimated the degree of centrality for all categories. Finally, the community structure was detected using the walktrap algorithm.ResultsThe resulting network revealed strong associations between individual categories within components of the ICF (i.e., Body functions, Activities and participation, and Environmental factors). The results also showed three distinct clusters of categories corresponding to the same three components. The categories e410 Individual attitudes of immediate family members, e450 Individual attitudes of health professionals, d910 Community life, and d175 Solving problems were among the most central categories in the Brief ICF-CS network.ConclusionThese results demonstrate the utility of a network approach for estimating the structure of the ICF-CSs. Implications of these results for clinical interventions and development of new instruments are discussed.
Project description:Pestiviruses are pathogens of cloven-hoofed animals, belonging to the Flaviviridae. The pestiviral particle consists of a lipid membrane containing the three envelope glycoproteins Erns, E1, and E2 and a nucleocapsid of unknown symmetry, which is composed of the Core protein and the viral positive-sense RNA genome. The positively charged pestiviral Core protein consists of 86 to 89 amino acids. To analyze the organization of essential domains, N- and C-terminal truncations, as well as internal deletions, were introduced into the Core coding sequence in the context of an infectious cDNA clone of classical swine fever virus strain Alfort. Amino acids 179 to 180, 194 to 198, and 208 to 212 proved to be of special importance for the generation of progeny virus. The results of transcomplementation of a series of C-terminally truncated Core molecules indicate the importance of Ala255 at the C terminus. The plasticity of Core protein was examined by the construction of concatemeric arrays of Core coding regions and the insertion of up to three yellow fluorescent protein (YFP) genes between two Core genes. Even a Core fusion protein with more than 10-fold-increased molecular mass was integrated into the viral particle and supported the production of infectious progeny virus. The unexpected plasticity of Core protein brings into question the formation of a regular icosahedric particle and supports the idea of a histone-like protein-RNA interaction. All viruses with a duplicated Core gene were unstable and reverted to the wild-type sequence. Interestingly, a nonviable YFP-Core construct was rescued by a mutation within the C-terminal domain of the nonstructural protein NS3.