Unknown

Dataset Information

0

Novel design for a dynamic ankle foot orthosis with motion feedback used for training in patients with hemiplegic gait: a pilot study.


ABSTRACT:

Background

We designed a novel ankle foot orthosis (AFO), namely, ideal training AFO (IT-AFO), with motion feedback on the hemiparetic lower limb to improve ambulation in individuals with stroke-related hemiplegia. We, therefore sought to compare the kinematic parameters of gait between IT-AFO with and without dynamic control and conventional anterior-type AFO or no AFO.

Methods

Gait parameters were measured using the RehaWatch® system in seven individuals with hemiplegia (mean 51.14 years). The parameters were compared across four conditions: no AFO, conventional anterior AFO, IT-AFO without dynamic control, and IT-AFO with dynamic control, with three trials of a 10-m walk test for each.

Results

The dorsiflexion angle increased during the swing phase when the IT-AFO was worn, and it was larger with dynamic control. These data can confirm drop foot improvement; however, the difference between the parameters with- and without-AFO control conditions was not significant in the swing phase. The IT-AFO with or without dynamic control enhanced the loading response to a greater extent between the hemiparetic and unaffected lower limbs than conventional AFO or no AFO. The duration of the stance phase on the hemiparetic lower limb was also longer when using IT-AFO with and without dynamic control than that when using conventional AFO, which improved asymmetry. User comfort and satisfaction was greater with IT-AFO than with the other conditions.

Conclusions

The IT-AFO with dynamic control improved gait pattern and weight shifting to the hemiparetic lower limb, reducing gait asymmetry. The difference with and without dynamic control of IT-AFO is not statistically significant, and it is limited by sample size. However, this study shows the potential of IT-AFO in applying positive motion feedback with gait training.

Trial registration

Taipei Medical University-Joint Institutional Review Board. N201510010 . Registered 12 February 2015. http://ohr.tmu.edu.tw/main.php .

SUBMITTER: Hsu CC 

PROVIDER: S-EPMC7433152 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel design for a dynamic ankle foot orthosis with motion feedback used for training in patients with hemiplegic gait: a pilot study.

Hsu Chih-Chao CC   Huang Yin-Kai YK   Kang Jiunn-Horng JH   Ko Yi-Feng YF   Liu Chia-Wei CW   Jaw Fu-Shan FS   Chen Shih-Ching SC  

Journal of neuroengineering and rehabilitation 20200818 1


<h4>Background</h4>We designed a novel ankle foot orthosis (AFO), namely, ideal training AFO (IT-AFO), with motion feedback on the hemiparetic lower limb to improve ambulation in individuals with stroke-related hemiplegia. We, therefore sought to compare the kinematic parameters of gait between IT-AFO with and without dynamic control and conventional anterior-type AFO or no AFO.<h4>Methods</h4>Gait parameters were measured using the RehaWatch® system in seven individuals with hemiplegia (mean 51  ...[more]

Similar Datasets

| S-EPMC7911173 | biostudies-literature
| S-EPMC6006663 | biostudies-literature
| S-EPMC9901085 | biostudies-literature
| S-EPMC10264639 | biostudies-literature
| S-EPMC9587270 | biostudies-literature
| S-EPMC6798503 | biostudies-literature
| S-EPMC9693806 | biostudies-literature
| S-EPMC9867850 | biostudies-literature
| S-EPMC4890526 | biostudies-literature
| S-EPMC5554564 | biostudies-literature