Unknown

Dataset Information

0

Therapeutic Potential of Chemically Modified miR-489 in Triple-Negative Breast Cancers.


ABSTRACT: Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-expression in TNBC cells. Among these tumor suppressing miRs, we found that miR-489 is most anti-proliferative in TNBC cells. miR-489 also blocked DNA damaging responses (DDRs) in TNBC cells. To define the mechanism by which miR-489 inhibits TNBC cell functions, we screened the potential target genes of miR-489 and identified MDC-1 and SUZ-12 as novel target genes of miR-489 in TNBC cells. To further exploit the therapeutic potentials of miR-489 in TNBC models, we chemically modified the guide strand of miR-489 (CMM489) by replacing Uracil with 5-fluorouracil (5-FU) so that tumor suppressor (miR-489) and DNA damaging (5-FU) components are combined into a single agent as a novel drug candidate for TNBCs. Our studies demonstrated that CMM489 shows superior effects over miR-489 or 5-FU in inhibition of TNBC cell proliferation and tumor progression, suggesting its therapeutic efficacy in TNBC models.

SUBMITTER: Soung YH 

PROVIDER: S-EPMC7463492 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Therapeutic Potential of Chemically Modified miR-489 in Triple-Negative Breast Cancers.

Soung Young Hwa YH   Chung Heesung H   Yan Cecilia C   Fesler Andrew A   Kim Hyungjin H   Oh Eok-Soo ES   Ju Jingfang J   Chung Jun J  

Cancers 20200807 8


Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-exp  ...[more]

Similar Datasets

| S-EPMC8150754 | biostudies-literature
| S-EPMC8232221 | biostudies-literature
| S-EPMC4294347 | biostudies-literature
| S-EPMC6537044 | biostudies-literature
| S-EPMC8434261 | biostudies-literature
| S-EPMC5935465 | biostudies-literature
| S-EPMC7649527 | biostudies-literature