Project description:Background: Borrelia species are divided into three groups depending on the induced disease and the tick vector. Borrelia miyamotoi is a relapsing fever Borrelia but can induce symptoms related to Lyme disease. Discovered in 1995, it is found in ticks around the world. In France, this species of Borrelia has been isolated in ticks and rodents, but was not yet observed in humans. Objective: The aim of the study was to look for B. miyamotoi in symptomatic patients. Methods: Real-time PCR was performed on 824 blood samples from patients presenting symptoms of persistent polymorphic syndrome possibly due to tick bite, a syndrome recognized by the French Authority for Health, which is close to the post-treatment Lyme disease syndrome. PCR was also performed on 24 healthy control persons. The primers were specifically designed for this particular species of Borrelia. The sequence of interest of 94 bp is located on the glpQ gene. Sequencing of amplification products, randomly chosen, confirmed the amplification specificity. To better investigate cases, a clinical questionnaire was sent to the patients PCR-positive for B. miyamotoi and to their physician. Results: This search revealed a positive PCR for B. miyamotoi in the blood from 43 patients out of 824 (5.22%). PCR was negative in all control persons. A clinical chart was obtained from 31 of the 43 patients. A history of erythema migrans was reported in five of these 31 patients (16%). All patients complained about fatigue, joint pain and neuro-cognitive disorders. Some patients complained about respiratory problems (chest tightness and/or lack of air in 41.9%). Episodes of relapsing fever were reported by 11 of the 31 patients (35.5%). Chilliness, hot flushes and/or sweats were reported by around half of the patients. B. miyamotoi may not cross-react with B. burgdorferi serology. Conclusion: This study is the first to detect B. miyamotoi in human blood in France. This series of human B. miyamotoi infection is the largest in patients with long term persistent syndrome. Our data suggest that this infection may be persistent, even on the long term.
Project description:We report 2 human cases of Borrelia miyamotoi disease diagnosed in Sweden, including 1 case of meningitis in an apparently immunocompetent patient. The diagnoses were confirmed by 3 different independent PCR assays and DNA sequencing from cerebrospinal fluid, supplemented by serologic analyses.
Project description:Borrelia miyamotoi is a tick-borne pathogen that causes Borrelia miyamotoi disease (BMD), an emerging infectious disease of increasing public health significance. B. miyamotoi is transmitted by the same tick vector (Ixodes spp.) as B. burgdorferi sensu lato (s.l.), the causative agent of Lyme disease, therefore laboratory assays to differentiate BMD from Lyme disease are needed to avoid misdiagnoses and for disease confirmation. We previously performed a global immunoproteomic analysis of the murine host antibody response against B. miyamotoi infection to discover antigens that could serologically distinguish the two infections. An initial assessment identified a putative lipoprotein antigen, here termed BmaA, as a promising candidate to augment current research-based serological assays. In this study, we show that BmaA is an outer surface-associated protein by its susceptibility to protease digestion. Synthesis of BmaA in culture was independent of temperature at either 23 °C or 34 °C. The BmaA gene is present in two identical loci harbored on separate plasmids in North American strains LB-2001 and CT13-2396. bmaA-like sequences are present in other B. miyamotoi strains and relapsing fever borrelia as multicopy genes and as paralogous or orthologous gene families. IgM and IgG antibodies in pooled serum from BMD patients reacted with native BmaA fractionated by 2-dimensional gel electrophoresis and identified by mass spectrometry. IgG against recombinant BmaA was detected in 4 of 5 BMD patient serum samples as compared with 1 of 23 serum samples collected from patients with various stages of Lyme disease. Human anti-B. turicatae serum did not seroreact with recombinant BmaA suggesting a role as a species-specific diagnostic antigen. These results demonstrated that BmaA elicits a human host antibody response during B. miyamotoi infection but not in a tested group of B. burgdorferi-infected Lyme disease patients, thereby providing a potentially useful addition for developing BMD serodiagnostic tests.
Project description:Borrelia burgdorferi and Borrelia miyamotoi are tick-vectored zoonotic pathogens maintained in wildlife species. Tick populations are establishing in new areas globally in response to climate change and other factors. New Brunswick is a Canadian maritime province at the advancing front of tick population establishment and has seen increasing numbers of ticks carrying B. burgdorferi, and more recently B. miyamotoi. Further, it is part of a region of Atlantic Canada with wildlife species composition differing from much of continental North America and little information exists as to the presence and frequency of infection of Borrelia spp. in wildlife in this region. We used a citizen science approach to collect a wide range of animals including migratory birds, medium-sized mammals, and small mammals. In total we tested 339 animals representing 20 species for the presence of B. burgdorferi and B. miyamotoi. We have developed new nested PCR primers and a protocol with excellent specificity for detecting both of these Borrelia species, both single and double infections, in tissues and organs of various wildlife species. The positive animals were primarily small non-migratory mammals, approximately twice as many were infected with B. burgdorferi than B. miyamotoi and one animal was found infected with both. In addition to established reservoir species, the jumping mouse (Napaeozapus insignis) was found frequently infected; this species had the highest infection prevalence for both B. burgdorferi and B. miyamotoi and has not previously been identified as an important carrier for either Borrelia species. Comprehensive testing of tissues found that all instances of B. burgdorferi infection were limited to one tissue within the host, whereas two of the five B. miyamotoi infections were diffuse and found in multiple systems. In the one coinfected specimen, two fetuses were also recovered and found infected with B. miyamotoi. This presumptive transplacental transmission suggests that vertical transmission in mammals is possible. This finding implies that B. miyamotoi could rapidly spread into wildlife populations, as well as having potential human health implications.
Project description:We confirmed infection of 2 patients with Borrelia miyamotoi in Japan by retrospective surveillance of Lyme disease patients and detection of B. miyamotoi DNA in serum samples. One patient also showed seroconversion for antibody against recombinant glycerophosphodiester phosphodiesterase of B. miyamotoi. Indigenous relapsing fever should be considered a health concern in Japan.